HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

N-acetylcysteine use as an adjuvant to bone cement to fight periprosthetic joint infections: A preliminary in vitro efficacy and biocompatibility study.

Abstract
When antibiotic laden bone cement is used to manage periprosthetic joint infection (PJI), failure still occurs with its use in up to 30% of cases. Therefore, we designed an in vitro study to assess the bactericidal effect of N-acetylcysteine (NAC), an antibacterial adjuvant, in cement against planktonic and biofilm forms of common PJI pathogens. NAC (10%, 20%, 30%, 40%, and 50% w/v) added to polymethyl methacrylate (PMMA) and incubated in broth at 36°C. PMMA-alone and/or culture bacteria alone were used as a negative control. Aliquots of cement elution from each group were taken at 1 day and 1 week and then were investigated for antimicrobial efficacy against the planktonic-form and the biofilm-form of Staphylococcus aureus and Escherichia coli. The primary outcome was the residual colony-forming unit count. The cytotoxicity and mechanical properties of the NAC-PMMA cement-blocks were also assessed. NAC-PMMA efficacy against the planktonic bacteria was demonstrated at a minimum of 30% at Day 1 and a minimum of 20% at 1 week after (p < .001). NAC-PMMA cement was effective against biofilm at a minimum of 30% of NAC at 1 day and 1 week of cement immersion (p < .001). The PMMA alone group was identified as having the highest cytotoxicity (p < .001). NAC decreased the stiffness (p = .004) and maximum load breaking point of the cement (p = .029). NAC is an effective and biocompatible adjuvant to PMMA in terms of antibacterial activity against Staphylococcus aureus and Escherichia coli. The broad antibacterial spectrum of NAC, its low expense, and minimal cytotoxicity makes it an ideal agent for addition to PMMA cement.
AuthorsKamolsak Sukhonthamarn, Jeongeun Cho, Emanuele Chisari, Karan Goswami, William V Arnold, Javad Parvizi
JournalJournal of orthopaedic research : official publication of the Orthopaedic Research Society (J Orthop Res) Vol. 39 Issue 2 Pg. 356-364 (02 2021) ISSN: 1554-527X [Electronic] United States
PMID33179364 (Publication Type: Evaluation Study, Journal Article)
Copyright© 2020 Orthopaedic Research Society. Published by Wiley Periodicals LLC.
Chemical References
  • Antiviral Agents
  • Bone Cements
  • Polymethyl Methacrylate
  • Acetylcysteine
Topics
  • Acetylcysteine (pharmacology, therapeutic use)
  • Antiviral Agents (pharmacology, therapeutic use)
  • Arthritis, Infectious (drug therapy)
  • Biofilms (drug effects)
  • Bone Cements
  • Humans
  • Microbial Sensitivity Tests
  • Polymethyl Methacrylate
  • Prosthesis-Related Infections (drug therapy)
  • Toxicity Tests

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: