HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Correlation of Conservation of Sequence and Structures of Mycobacterial Hemerythrin-like Proteins with Evolutionary Relationship and Host Pathogenicity.

Abstract
The Rv2633c gene of Mycobacterium tuberculosis, which plays a role in infection, encodes a hemerythrin-like protein (HLP). The crystal structure of an orthologue of Rv2633c, the HLP from Mycobacterium kansasii, revealed that it possessed structural features that were distinct from other hemerythrins and HLPs. These and other orthologous proteins comprise a distinct class of non-heme di-iron HLPs that are only found in mycobacteria. This study presents an analysis and comparison of protein sequences, putative structures, and evolutionary relationship of HLPs from 20 mycobacterial species that are known to cause tuberculosis or pulmonary disorders in humans. The results of this analysis allowed correlation of the physicochemical characteristics of amino acid residues that are substituted in these highly conserved sequences with their position in structures, possible effects on function, and evolutionary relationships. The sequences of the proteins from M. tuberculosis, Mycobacterium bovis, and other members of the M. tuberculosis complex, which cause tuberculosis, have substitutions not seen in the other non-tuberculous mycobacteria. Furthermore, groups of species that are closely related, based on phylogenetic analysis, possess substitutions of otherwise conserved residues not seen in other species that are less related. This information is correlated with the occurrence and clinical presentations of these groups of mycobacterial species. The results of this study provide a framework for structure-function studies to determine how subtle differences in the primary sequences of members of this family of proteins correlate with their structures and activities and how this may influence the infectious properties of the host species.
AuthorsZhongxin Ma, Maria Luiza Caldas Nogueira, Daniela Priscila Marchi-Salvador, Victor L Davidson
JournalACS omega (ACS Omega) Vol. 5 Issue 36 Pg. 23385-23392 (Sep 15 2020) ISSN: 2470-1343 [Electronic] United States
PMID32954191 (Publication Type: Journal Article)
CopyrightCopyright © 2020 American Chemical Society.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: