HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Polyadenylation of Histone H3.1 mRNA Promotes Cell Transformation by Displacing H3.3 from Gene Regulatory Elements.

Abstract
Replication-dependent canonical histone messenger RNAs (mRNAs) do not terminate with a poly(A) tail at the 3' end. We previously demonstrated that exposure to arsenic, an environmental carcinogen, induces polyadenylation of canonical histone H3.1 mRNA, causing transformation of human cells in vitro. Here we report that polyadenylation of H3.1 mRNA increases H3.1 protein, resulting in displacement of histone variant H3.3 at active promoters, enhancers, and insulator regions, leading to transcriptional deregulation, G2/M cell-cycle arrest, chromosome aneuploidy, and aberrations. In support of these observations, knocking down the expression of H3.3 induced cell transformation, whereas ectopic expression of H3.3 attenuated arsenic-induced cell transformation. Notably, arsenic exposure also resulted in displacement of H3.3 from active promoters, enhancers, and insulator regions. These data suggest that H3.3 displacement might be central to carcinogenesis caused by polyadenylation of H3.1 mRNA upon arsenic exposure. Our findings illustrate the importance of proper histone stoichiometry in maintaining genome integrity.
AuthorsDanqi Chen, Qiao Yi Chen, Zhenjia Wang, Yusha Zhu, Thomas Kluz, Wuwei Tan, Jinquan Li, Feng Wu, Lei Fang, Xiaoru Zhang, Rongquan He, Steven Shen, Hong Sun, Chongzhi Zang, Chunyuan Jin, Max Costa
JournaliScience (iScience) Vol. 23 Issue 9 Pg. 101518 (Sep 25 2020) ISSN: 2589-0042 [Electronic] United States
PMID32920490 (Publication Type: Journal Article)
Copyright© 2020 The Author(s).

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: