HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Searching for glycomic biomarkers for predicting resilience and vulnerability in a rat model of posttraumatic stress disorder.

Abstract
Posttraumatic stress disorder (PTSD) is triggered by traumatic events in 10-20% of exposed subjects. N-linked glycosylation, by modifying protein functions, may provide an important environmental link predicting vulnerability. Our goals were (1) to find alterations in plasma N-glycome predicting stress-vulnerability; (2) to investigate how trauma affects N-glycome in the plasma (PGP) and in three PTSD-related brain regions (prefrontal cortex, hippocampus and amygdala; BGP), hence, uncover specific targets for PTSD treatment. We examined male (1) controls, (2) traumatized vulnerable and (3) traumatized resilient rats both before and several weeks after electric footshock. Vulnerable and resilient groups were separated by z-score analysis of behavior. Higher freezing behavior and decreased social interest were detected in vulnerable groups compared to control and resilient rats. Innate anxiety did not predict vulnerability, but pretrauma levels of PGP10(FA1G1Ga1), PGP11(FA2G2), and PGP15(FA3G2) correlated positively with it, the last one being the most sensitive. Traumatic stress induced a shift from large, elaborate N-glycans toward simpler neutral structures in the plasma of all traumatized animals and specifically in the prefrontal cortex of vulnerable rats. In plasma trauma increased PGP17(A2G2S) level in vulnerable animals. In all three brain regions, BGP11(F(6)A2B) was more abundant in vulnerable rats, while most behavioral correlations occurred in the prefrontal cortex. In conclusion, we found N-glycans (especially PGP15(FA3G2)) in plasma as possible biomarkers of vulnerability to trauma that warrants further investigation. Posttrauma PGP17(A2G2S1) increase showed overlap with human results highlighting the utility and relevance of this animal model. Prefrontal cortex is a key site of trauma-induced glycosylation changes that could modulate the behavioral outcome.
AuthorsCsilla Lea Fazekas, Eszter Sipos, Thomas Klaric, Bibiána Török, Manon Bellardie, Gordana Nedic Erjave, Matea Nikolac Perkovic, Gordan Lauc, Nela Pivac, Dóra Zelena
JournalStress (Amsterdam, Netherlands) (Stress) Vol. 23 Issue 6 Pg. 715-731 (11 2020) ISSN: 1607-8888 [Electronic] England
PMID32666865 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Biomarkers
Topics
  • Amygdala
  • Animals
  • Biomarkers
  • Glycomics
  • Male
  • Rats
  • Stress Disorders, Post-Traumatic
  • Stress, Psychological

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: