HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Xiaoyaosan decoction alleviated rat liver fibrosis via the TGFβ/Smad and Akt/FoxO3 signaling pathways based on network pharmacology analysis.

AbstractETHNOPHARMACOLOGICAL RELEVANCE:
Liver fibrosis is an outcome of many chronic liver diseases and often results in cirrhosis, liver failure, and even hepatocarcinoma. Xiaoyaosan decoction (XYS) as a classical Traditional Chinese Medicine (TCM) formula is used to liver fibrosis in clinical practice while its mechanism is unclear.
AIM OF THE STUDY:
The aim of this study was to investigate the anti-fibrosis effect of XYS and to explore the molecular mechanisms by combining network pharmacology and transcriptomic technologies.
MATERIALS AND METHODS:
The carbon tetrachloride (CCl4)-induced liver fibrosis rat were treated with three doses of XYS. The liver fibrosis and function were evaluated by histopathological examination and serum biochemical detection. The fibrosis related protein a-SMA and collagen I were assessed by Western blot. Different expressed genes (DEGs) between XYS-treated group and model group were analyzed. The herb-component-target network was constructed combined the network pharmacology. The predict targets and pathways were validated by in vitro and in vivo experiments.
RESULTS:
With XYS treatment, the liver function was significantly improved, and fibrotic changes were alleviated. The a-SMA and collagen I expression levels in the liver were also decreased in XYS-treated rats compared with CCl4 model rats. 108 active components and 42 targets from 8 herbs constituted herb-compound-target network by transcriptomics and network pharmacology analysis. The KEGG pathway and GO enrichment analyses showed that the FoxO, TGFβ, AMPK, MAPK, PPAR, and hepatitis B and C pathways were involved in the anti-fibrosis effects of XYS. In the liver tissues, p-FoxO3a and p-Akt expression levels were significantly increased in the CCl4 model group but decreased in the XYS-treated group. The TGFβ1/Smad pathway and Akt/FoxO3 pathway were verified in LX2 cells by inhibiting phosphorylation of Smad3 and Akt activity, respectively.
CONCLUSIONS:
Our findings suggested that XYS markedly alleviated CCl4-induced liver fibrosis in histopathological and serum liver function analyses, and this effect may occur via the TGFβ1/Smad and Akt/FoxO signaling pathways.
AuthorsYuan Zhou, Rong Wu, Fei-Fei Cai, Wen-Jun Zhou, Yi-Yu Lu, Hui Zhang, Qi-Long Chen, Shi-Bing Su
JournalJournal of ethnopharmacology (J Ethnopharmacol) Vol. 264 Pg. 113021 (Jan 10 2021) ISSN: 1872-7573 [Electronic] Ireland
PMID32479885 (Publication Type: Journal Article)
CopyrightCopyright © 2020 Elsevier B.V. All rights reserved.
Chemical References
  • Drugs, Chinese Herbal
  • FOXO3 protein, rat
  • Forkhead Box Protein O3
  • Smad3 Protein
  • Smad3 protein, rat
  • Transforming Growth Factor beta
  • xiaoyaosan
  • Proto-Oncogene Proteins c-akt
Topics
  • Animals
  • Drugs, Chinese Herbal (pharmacology, therapeutic use)
  • Forkhead Box Protein O3 (antagonists & inhibitors, metabolism)
  • Liver Cirrhosis (drug therapy, metabolism)
  • Male
  • Protein Interaction Maps (drug effects, physiology)
  • Proto-Oncogene Proteins c-akt (antagonists & inhibitors, metabolism)
  • Rats
  • Rats, Wistar
  • Signal Transduction (drug effects, physiology)
  • Smad3 Protein (antagonists & inhibitors, metabolism)
  • Transforming Growth Factor beta (antagonists & inhibitors, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: