HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Zinc-Phosphate Nanoparticles as a Novel Anticancer Agent: An In Vitro Evaluation of Their Ability to Induce Apoptosis.

Abstract
In the current study, zinc-phosphate nanoparticles (ZnPNPs) were investigated for the first time due to their anticancer activity against breast cancer Michigan Cancer Foundation-7 (MCF-7) cell line. The modification of such nanoparticles (NPs) was further examined for physicochemical characterization using various techniques such as powder X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential calculation, field emission scanning electron microscopy (FESEM), energy-dispersed spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. Then, the newly fabricated ZnPNPs were tested for their in vitro cell cytotoxicity against breast cancer MCF-7 cells and noncancerous human embryonic kidney HEK293 cells, using MTT assay as a colorimetric one to assess cell metabolic activity for 24 h. The apoptotic efficacy of the NPs was subsequently confirmed through data obtained from Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining kit and cell cycle analysis. Determination of reactive oxygen species (ROS) generation was further performed via flow cytometry. Additionally, the expression of tumor suppressor genes p53 was analyzed using real-time polymerase chain reaction (PCR). Also, the prepared NPs showed a mean particle size of 38 nm. The measurements correspondingly showed that the cytotoxicity of MCF-7 cells depends on the concentration of NPs (IC50 = 80.112 μg/mL). MCF-7 cells were associated with initiation of apoptotic pathway in cells. Additionally, flow cytometry revealed cell cycle arrest in sub-G1 phase. ROS production was also obtained after treatment with IC50 concentration. According to annexin V-FITC/PI staining kit data, the percentage of early and late apoptotic cells was 78.2% in those treated with ZnPNPs. Moreover, the real-time PCR results demonstrated the ability of NPs in upregulating p53 gene expression. In summary, the data demonstrated that fabricated ZnPNPs had prominence to act as antitumor agents in breast cancer therapy.
AuthorsSedigheh Vafaei, Seyed Ataollah Sadat Shandiz, Zeinab Piravar
JournalBiological trace element research (Biol Trace Elem Res) Vol. 198 Issue 1 Pg. 109-117 (Nov 2020) ISSN: 1559-0720 [Electronic] United States
PMID32006202 (Publication Type: Journal Article)
Chemical References
  • Antineoplastic Agents
  • Phosphates
  • Zinc
Topics
  • Antineoplastic Agents (pharmacology)
  • Apoptosis
  • HEK293 Cells
  • Humans
  • MCF-7 Cells
  • Nanoparticles
  • Phosphates (pharmacology)
  • Zinc (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: