HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Hypermethylation of mismatch repair gene hMSH2 associates with platinum-resistant disease in epithelial ovarian cancer.

AbstractPURPOSE:
One major reason of the high mortality of epithelial ovarian cancer (EOC) is due to platinum-based chemotherapy resistance. Aberrant DNA methylation may be a potential mechanism underlying the development of platinum resistance in EOC. The purpose of this study is to discover potential aberrant DNA methylation that contributes to drug resistance.
METHODS:
By initially screening of 16 platinum-sensitive/resistant samples from EOC patients with reduced representation bisulfite sequencing (RRBS), the upstream region of the hMSH2 gene was discovered hypermethylated in the platinum-resistant group. The effect of hMSH2 methylation on the cellular response to cisplatin was explored by demethylation and knockdown assays in ovarian cancer cell line A2780. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry was employed to examine the methylation levels of hMSH2 upstream region in additional 40 EOC patient samples. RT-qPCR and IHC assay was used to detect the hMSH2 mRNA and protein expression in extended 150 patients.
RESULTS:
RRBS assay discovered an upstream region from - 1193 to - 1125 of hMSH2 was significant hypermethylated in resistant EOC patients (P = 1.06 × 10-14). In vitro analysis demonstrated that global demethylation increased cisplatin sensitivity along with a higher expression of the hMSH2 mRNA and protein. Knockdown hMSH2 reduced the cell sensitivity to cisplatin. MALDI-TOF mass spectrometry assay validated the strong association of hypermethylation of hMSH2 upstream region with platinum resistance. Spearman's correlation analysis revealed a significantly negative connection between methylation level of hMSH2 upstream region and its expression. The Kaplan-Meier analyses showed the high methylation of hMSH2 promoter region, and its low expressions are associated with worse survival. In multivariable models, hMSH2 low expression was an independent factor predicting poor outcome (P = 0.03, HR = 1.91, 95%CI = 1.85-2.31).
CONCLUSION:
The hypermethylation of hMSH2 upstream region is associated with platinum resistant in EOC, and low expression of hMSH2 may be an index for the poor prognosis.
AuthorsHua Tian, Li Yan, Li Xiao-Fei, Sun Hai-Yan, Chen Juan, Kang Shan
JournalClinical epigenetics (Clin Epigenetics) Vol. 11 Issue 1 Pg. 153 (10 30 2019) ISSN: 1868-7083 [Electronic] Germany
PMID31666131 (Publication Type: Journal Article)
Chemical References
  • MSH2 protein, human
  • MutS Homolog 2 Protein
  • Cisplatin
Topics
  • Adult
  • Aged
  • Carcinoma, Ovarian Epithelial (drug therapy, genetics, metabolism)
  • Cell Line, Tumor
  • Cisplatin (pharmacology)
  • DNA Methylation
  • Down-Regulation
  • Drug Resistance, Neoplasm
  • Epigenesis, Genetic
  • Female
  • Gene Expression Regulation, Neoplastic (drug effects)
  • Humans
  • Middle Aged
  • MutS Homolog 2 Protein (genetics, metabolism)
  • Ovarian Neoplasms (drug therapy, genetics, metabolism)
  • Prognosis
  • Promoter Regions, Genetic
  • Sequence Analysis, DNA (methods)
  • Survival Analysis
  • Young Adult

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: