HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Increased Cellular Levels of MicroRNA-9 and MicroRNA-221 Correlate with Cancer Stemness and Predict Poor Outcome in Human Breast Cancer.

Abstract
Background /Aims: Recent studies of microRNA (miRNA) involvement in tumorigenesis have indicated the critical role of these non-coding small RNAs in malignant transformation, but the prognostic role, if any, of miRNAs in breast cancer remains undetermined. Therefore, we assessed the prognostic significance of microRNA-9 (miR-9) and miR-221 in breast cancer toward the goal of understanding the contribution(s) of these miRNAs to cancer cell stemness.
METHODS:
The level of each of miR-9 and miR-221 in 206 paired laser capture microdissected tumor cells and non-tumor cells was determined by quantitative reverse transcription-PCR (qRT-PCR). The relationship between the miRNA signature and clinicopathological data and prognosis of breast cancer was assessed. Identification of a stem cell-enriched side population was achieved with fluorescence-activated cell sorting and a sphere-forming assay. Wound healing, Boyden chamber assays, and western blotting were used to study the contribution of each miRNA to tumor cell migration and invasion.
RESULTS:
We found that induction of miR-9 and miR-221 mimics conferred side-population cells to form spheroidal tumor colonies in suspension culture that maintained the mesenchymal stem-cell potential in non-invasive MCF-7 breast cancer cells. In contrast, knockdown of both miR-9 and miR-221 in invasive MDA-MB-231 breast cancer cells dramatically decreased the number of side-population colonies with stem cell-like potency, which reduced the capacity for tumor-cell renewal, invasion, and migration. Clinically, the mean proportion of miR-9- or miR-221-overexpressing cells was significantly greater in tumor cells compared with non-tumor cells (P < 0.05). Increased levels of miR-9 and miR-221 in breast tissue portended a significantly elevated risk of progression to malignancy with respect to larger tumor size, poor differentiation, late-stage evolution, lymph-node metastasis (P < 0.05), and lower overall survival (Ptrend = 0.017; eight-year follow-up).
CONCLUSION:
Our findings provide strong evidence that miR-9 and miR-221 can enhance the generation of cancer stem cells to yield an invasive phenotype and that overexpression of these miRNAs predicts a poor outcome for breast cancer patients.
AuthorsChun-Wen Cheng, Jyh-Cherng Yu, Yi-Hsien Hsieh, Wen-Ling Liao, Jia-Ching Shieh, Chung-Chin Yao, Huei-Jane Lee, Po-Ming Chen, Pei-Ei Wu, Chen-Yang Shen
JournalCellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology (Cell Physiol Biochem) Vol. 48 Issue 5 Pg. 2205-2218 ( 2018) ISSN: 1421-9778 [Electronic] Germany
PMID30110679 (Publication Type: Journal Article)
Copyright© 2018 The Author(s). Published by S. Karger AG, Basel.
Chemical References
  • AC133 Antigen
  • Antagomirs
  • MIRN221 microRNA, human
  • MIRN92 microRNA, human
  • MicroRNAs
  • Nanog Homeobox Protein
Topics
  • AC133 Antigen (metabolism)
  • Adult
  • Antagomirs (metabolism)
  • Area Under Curve
  • Breast Neoplasms (diagnosis, genetics, mortality, pathology)
  • Cell Line, Tumor
  • Cell Movement
  • Female
  • Humans
  • Lymphatic Metastasis
  • MCF-7 Cells
  • MicroRNAs (antagonists & inhibitors, genetics, metabolism)
  • Middle Aged
  • Nanog Homeobox Protein (metabolism)
  • Neoplastic Stem Cells (cytology, metabolism)
  • Prognosis
  • Proportional Hazards Models
  • ROC Curve
  • Survival Rate

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: