HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Preparation of Folic Acid-Targeted Temperature-Sensitive Magnetoliposomes and their Antitumor Effects In Vitro and In Vivo.

AbstractBACKGROUND:
Ovarian cancer is a common gynecologic malignancy with poor prognosis, requiring innovative new therapeutic strategies. Temperature-controlled drug delivery to cancer cells represents a novel, promising, targeted treatment approach.
OBJECTIVE:
We prepared folate receptor-targeted thermosensitive liposomes wrapped with the HSP90 inhibitor 17-AAG and superparamagnetic material (17-AAG/MTSLs-FA), and tested the efficacy of these targeted magnetoliposomes in vitro and in vivo.
METHODS:
Magnetic thermosensitive liposomes wrapped with 17-AAG were coprecipitated with Fe3O4 magnetic nanoparticles and prepared by a rotary evaporation method. Experiments were conducted with SKOV3 human ovarian cancer cells and MCF7 human breast carcinoma cells to evaluate the anti-tumor effects.
RESULTS:
17-AAG/MTSLs-FA prepared in this study met the basic requirements for therapeutic application. The preparation method is relatively simple and the raw materials are readily available. The product exhibited strong magnetism, high encapsulation efficiencies, and satisfactory performance. The liposomes combined with hyperthermia significantly inhibited the proliferation of SKOV3 cells and induced apoptosis. Experiments using a mouse subcutaneous model as well as an ascites tumor xenograft model indicated that 17-AAG/MTSLs-FA was stable in vivo and effectively targeted tumor tissues expressing the folate receptor.
CONCLUSIONS:
Folic acid-conjugated 17-AAG magnetic thermosensitive liposomes in combination with an alternating magnetic field for heating can achieve a synergistic anti-tumor effect of chemotherapy and heat treatment, potentially offering a new method for ovarian cancer treatment.
AuthorsXihui Wang, Rui Yang, Chunyan Yuan, Yanli An, Qiusha Tang, Daozhen Chen
JournalTargeted oncology (Target Oncol) Vol. 13 Issue 4 Pg. 481-494 (08 2018) ISSN: 1776-260X [Electronic] France
PMID29992403 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Benzoquinones
  • Folate Receptors, GPI-Anchored
  • Lactams, Macrocyclic
  • Liposomes
  • Magnetite Nanoparticles
  • tanespimycin
  • Folic Acid
Topics
  • Animals
  • Benzoquinones (administration & dosage, chemistry)
  • Breast Neoplasms (drug therapy, metabolism, pathology)
  • Cell Line, Tumor
  • Combined Modality Therapy
  • Drug Delivery Systems (methods)
  • Female
  • Folate Receptors, GPI-Anchored (metabolism)
  • Folic Acid (metabolism)
  • Humans
  • Hyperthermia, Induced (methods)
  • Lactams, Macrocyclic (administration & dosage, chemistry)
  • Liposomes (administration & dosage, chemistry)
  • MCF-7 Cells
  • Magnetite Nanoparticles (administration & dosage, chemistry)
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Molecular Targeted Therapy
  • Ovarian Neoplasms (drug therapy, metabolism, pathology, therapy)
  • Random Allocation
  • Temperature
  • Xenograft Model Antitumor Assays

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: