HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

SPARC overexpression suppresses radiation-induced HSP27 and induces the collapse of mitochondrial Δψ in neuroblastoma cells.

Abstract
Neuroblastoma is the cause of >15% of cancer-associated mortality in children in the USA. Despite aggressive treatment regimens, the long-term survival rate for these children remains at <40%. The current study demonstrates that secreted protein acidic and rich in cysteine (SPARC) suppresses radiation-induced expression of heat shock protein 27 (HSP27) in vivo and suppresses mitochondrial membrane potential (Δψ) in neuroblastoma cells. In the present study, the overexpression of SPARC in SK-N-BE(2) and NB1691 neuroblastoma cell lines suppresses radiation-induced G2M cell cycle arrest, proliferation, HSP27 expression (in vitro and in vivo) and induces the collapse of the mitochondrial Δψ. Gene ontology analysis demonstrated that the overexpression of SPARC combined with irradiation, induces the expression of dissimilar molecular function genes in SK-N-BE(2) and NB1691 cells, providing evidence of a dissimilar response signaling pathway. These results demonstrate that overexpression of SPARC suppresses radiation-induced HSP27 expression in neuroblastoma cells and the combination of SPARC and radiation induces the expression of protein 21, but suppresses neuroblastoma tumor density in in vivo mouse models. SPARC also induces mitochondrial Δψ collapse in SK-N-BE(2) and NB1691 neuroblastoma cells.
AuthorsSmita Tanpure, Jerusha Boyineini, Manu Gnanamony, Reuben Antony, Karen S Fernández, Jaime Libes, Julian Lin, David Pinson, Pushpa A Joseph, Christopher S Gondi
JournalOncology letters (Oncol Lett) Vol. 13 Issue 6 Pg. 4602-4610 (Jun 2017) ISSN: 1792-1074 [Print] Greece
PMID28599461 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: