HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Friedreich ataxia-induced pluripotent stem cell-derived neurons show a cellular phenotype that is corrected by a benzamide HDAC inhibitor.

Abstract
We employed induced pluripotent stem cell (iPSC)-derived neurons obtained from Friedreich ataxia (FRDA) patients and healthy subjects, FRDA neurons and CT neurons, respectively, to unveil phenotypic alterations related to frataxin (FXN) deficiency and investigate if they can be reversed by treatments that upregulate FXN. FRDA and control iPSCs were equally capable of differentiating into a neuronal or astrocytic phenotype. FRDA neurons showed lower levels of iron–sulfur (Fe–S) and lipoic acid-containing proteins, higher labile iron pool (LIP), higher expression of mitochondrial superoxide dismutase (SOD2), increased reactive oxygen species (ROS) and lower reduced glutathione (GSH) levels, and enhanced sensitivity to oxidants compared with CT neurons, indicating deficient Fe–S cluster biogenesis, altered iron metabolism, and oxidative stress. Treatment with the benzamide HDAC inhibitor 109 significantly upregulated FXN expression and increased Fe–S and lipoic acid-containing protein levels, downregulated SOD2 levels, normalized LIP and ROS levels, and almost fully protected FRDA neurons from oxidative stress-mediated cell death. Our findings suggest that correction of FXN deficiency may not only stop disease progression, but also lead to clinical improvement by rescuing still surviving, but dysfunctional neurons.
AuthorsFranca Codazzi, Amelié Hu, Myriam Rai, Simona Donatello, Floramarida Salerno Scarzella, Elisabeth Mangiameli, Ilaria Pelizzoni, Fabio Grohovaz, Massimo Pandolfo
JournalHuman molecular genetics (Hum Mol Genet) Vol. 25 Issue 22 Pg. 4847-4855 (11 15 2016) ISSN: 1460-2083 [Electronic] England
PMID28175303 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Benzamides
  • Histone Deacetylase Inhibitors
  • Iron-Binding Proteins
  • Iron-Sulfur Proteins
  • frataxin
  • Thioctic Acid
  • Superoxide Dismutase
  • superoxide dismutase 2
Topics
  • Benzamides (pharmacology)
  • Friedreich Ataxia (pathology)
  • Histone Deacetylase Inhibitors (pharmacology)
  • Humans
  • Induced Pluripotent Stem Cells (cytology, drug effects, metabolism)
  • Iron-Binding Proteins (metabolism)
  • Iron-Sulfur Proteins (metabolism)
  • Mitochondria (metabolism)
  • Neurons (cytology, drug effects, metabolism)
  • Oxidative Stress (physiology)
  • Phenotype
  • Superoxide Dismutase (metabolism)
  • Thioctic Acid (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: