HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Transcriptional networks implicated in human nonalcoholic fatty liver disease.

Abstract
The transcriptome of nonalcoholic fatty liver disease (NAFLD) was investigated in several studies. However, the implications of transcriptional networks in progressive NAFLD are not clear and mechanisms inducing transition from nonalcoholic simple fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) are still elusive. The aims of this study were to (1) construct networks for progressive NAFLD, (2) identify hub genes and functional modules in these networks and (3) infer potential linkages among hub genes, transcription factors and microRNAs (miRNA) for NAFLD progression. A systems biology approach by combining differential expression analysis and weighted gene co-expression network analysis (WGCNA) was utilized to dissect transcriptional profiles in 19 normal, 10 NAFL and 16 NASH patients. Based on this framework, 3 modules related to chromosome organization, proteasomal ubiquitin-dependent protein degradation and immune response were identified in NASH network. Furthermore, 9 modules of co-expressed genes associated with NAFL/NASH transition were found. Further characterization of these modules defined 13 highly connected hub genes in NAFLD progression network. Interestingly, 11 significantly changed miRNAs were predicted to target 10 of the 13 hub genes. Characterization of modules and hub genes that may be regulated by miRNAs could facilitate the identification of candidate genes and pathways responsible for NAFL/NASH transition and lead to a better understanding of NAFLD pathogenesis. The identified modules and hub genes may point to potential targets for therapeutic interventions.
AuthorsHua Ye, Wei Liu
JournalMolecular genetics and genomics : MGG (Mol Genet Genomics) Vol. 290 Issue 5 Pg. 1793-804 (Oct 2015) ISSN: 1617-4623 [Electronic] Germany
PMID25851235 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • MicroRNAs
Topics
  • Gene Regulatory Networks
  • Humans
  • MicroRNAs (genetics)
  • Non-alcoholic Fatty Liver Disease (genetics)
  • Transcription, Genetic

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: