HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Melatonin prevents morphine-induced hyperalgesia and tolerance in rats: role of protein kinase C and N-methyl-D-aspartate receptors.

AbstractBACKGROUND:
Morphine-induced hyperalgesia and tolerance significantly limits its clinical use in relieving acute and chronic pain. Melatonin, a pineal gland neurohormone, has been shown to participate in certain neuropsychopharmacological actions. The present study investigated the effect of melatonin on morphine-induced hyperalgesia and tolerance and possible involvement of protein kinase C (PKC)/N-methyl-D-aspartate (NMDA) pathway in melatonin-mediated.
METHODS:
Experiments were performed on adult, male Sprague-Dawley rats. Melatonin (10 mg/kg, intraperitoneal, i.p.) or saline was administrated 10 min after morphine injection (10 mg/kg, subcutaneous, s.c.) each day for consecutive 14 days. Withdrawal threshold of the hindpaw to mechanical and thermal stimulation was measured before any drug administration and one hour after melatonin or saline on each designated test day. On the 15(th) day, thermal withdrawal was measured after s.c. morphine (20 mg/kg), but not melatonin, and morphine tolerance was measured and expressed by MPAE% (percent of maximal possible anti-nociceptive effect) of morphine. Levels of expression of protein kinase C gamma (PKCγ) and NMDA receptor subtype NR1 in spinal cord were detected by Western blotting.
RESULTS:
The mechanical withdrawal threshold and thermal withdrawal latency decreased and shortened significantly (i.e., threshold decreased) in rats that received morphine treatment for two weeks compared with that in rats receiving saline. This morphine-induced mechanical and thermal hyperalgesia were greatly attenuated by co-administration of morphine with melatonin. The MPAE% representing morphine analgesic effect was reduced approximately 60% in rats that received morphine treatment. However, following the treatment of morphine with melatonin, the MPAE% was reduced only about 30%, comparing with those that received saline treatment as control. Administration of morphine alone resulted in significantly increased expression of PKCγ and NR1 proteins in the spinal cord. These increased levels of expression of PKCγ and NR1 were significantly inhibited by co-administration of morphine with melatonin.
CONCLUSIONS:
Our findings demonstrate that melatonin have potential to attenuate repetitive morphine-induced hyperalgesia and tolerance, possibly by inhibiting PKCγ and NR1 activities in the spinal cord.
AuthorsLi Song, Chaoran Wu, Yunxia Zuo
JournalBMC anesthesiology (BMC Anesthesiol) Vol. 15 Pg. 12 ( 2015) ISSN: 1471-2253 [Electronic] England
PMID25745356 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Analgesics, Opioid
  • Receptors, N-Methyl-D-Aspartate
  • Morphine
  • protein kinase C gamma
  • Protein Kinase C
  • Melatonin
Topics
  • Analgesics, Opioid (administration & dosage, antagonists & inhibitors, pharmacology)
  • Animals
  • Drug Tolerance (physiology)
  • Hyperalgesia (chemically induced, physiopathology, prevention & control)
  • Male
  • Melatonin (pharmacology)
  • Morphine (antagonists & inhibitors, pharmacology)
  • Pain Measurement (drug effects)
  • Protein Kinase C (biosynthesis, physiology)
  • Rats
  • Receptors, N-Methyl-D-Aspartate (biosynthesis, physiology)
  • Spinal Cord (drug effects, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: