HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Identification and characterization of the biosynthetic gene cluster of thiolutin, a tumor angiogenesis inhibitor, in Saccharothrix algeriensis NRRL B-24137.

Abstract
In this study, a new dithiolopyrrolone biosynthetic pathway was identified in Saccharothrix algeriensis NRRL B-24137, which was reported to produce a variety of dithiolopyrrolone natural products including thiolutin, a potential drug candidate for tumor angiogenesis inhibition. Bioinformatics analysis of the cluster revealed that it contains all the essential genes for holothin core biosynthesis and several other auxiliary genes. Interestingly, heterologous expression of the gene cluster in Streptomyces albus only induced the production of holomycin, implying that the gene responsible for the N4-methylation and the gene(s) involved in the formation of various acylated chains on N7 position of the holothin may locate outside the gene cluster. Incubation of holomycin with S-adenosyl-L-methionine (SAM) in the cell-free extract of Sa. algeriensis resulted in the production of thiolutin, suggesting that the N4-methyl group of thiolutin is originated from SAM, and the N4-methylation could be in the late stage of biosynthesis of thiolutin type dithiolopyrrolones. An evolution-based model for biosynthesis of thiolutin and its analogs was further proposed based on these results.
AuthorsSheng Huang, Ming Him Tong, Zhiwei Qin, Zixin Deng, Hai Deng, Yi Yu
JournalAnti-cancer agents in medicinal chemistry (Anticancer Agents Med Chem) Vol. 15 Issue 3 Pg. 277-84 ( 2015) ISSN: 1875-5992 [Electronic] Netherlands
PMID25353334 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Angiogenesis Inhibitors
  • Biological Products
  • Pyrrolidinones
  • acetopyrrothine
Topics
  • Actinomycetales (genetics)
  • Angiogenesis Inhibitors (biosynthesis, chemistry, isolation & purification)
  • Biological Products (chemistry, isolation & purification, metabolism)
  • Biosynthetic Pathways (genetics)
  • Computational Biology
  • Molecular Structure
  • Multigene Family (genetics)
  • Pyrrolidinones (chemistry, isolation & purification, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: