HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Mamld1 deficiency significantly reduces mRNA expression levels of multiple genes expressed in mouse fetal Leydig cells but permits normal genital and reproductive development.

Abstract
Although mastermind-like domain containing 1 (MAMLD1) (CXORF6) on human chromosome Xq28 has been shown to be a causative gene for 46,XY disorders of sex development with hypospadias, the biological function of MAMLD1/Mamld1 remains to be elucidated. In this study, we first showed gradual and steady increase of testicular Mamld1 mRNA expression levels in wild-type male mice from 12.5 to 18.5 d postcoitum. We then generated Mamld1 knockout (KO) male mice and revealed mildly but significantly reduced testicular mRNA levels (65-80%) of genes exclusively expressed in Leydig cells (Star, Cyp11a1, Cyp17a1, Hsd3b1, and Insl3) as well as grossly normal testicular mRNA levels of genes expressed in other cell types or in Leydig and other cell types. However, no demonstrable abnormality was identified for cytochrome P450 17A1 and 3β-hydroxysteroid dehydrogenase (HSD3B) protein expression levels, appearance of external and internal genitalia, anogenital distance, testis weight, Leydig cell number, intratesticular testosterone and other steroid metabolite concentrations, histological findings, in situ hybridization findings for sonic hedgehog (the key molecule for genital tubercle development), and immunohistochemical findings for anti-Müllerian hormone (Sertoli cell marker), HSD3B (Leydig cell marker), and DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 (germ cell marker) in the KO male mice. Fertility was also normal. These findings imply that Mamld1 deficiency significantly reduces mRNA expression levels of multiple genes expressed in mouse fetal Leydig cells but permits normal genital and reproductive development. The contrastive phenotypic findings between Mamld1 KO male mice and MAMLD1 mutation positive patients would primarily be ascribed to species difference in the fetal sex development.
AuthorsMami Miyado, Michiko Nakamura, Kenji Miyado, Ken-Ichirou Morohashi, Shinichiro Sano, Eiko Nagata, Maki Fukami, Tsutomu Ogata
JournalEndocrinology (Endocrinology) Vol. 153 Issue 12 Pg. 6033-40 (Dec 2012) ISSN: 1945-7170 [Electronic] United States
PMID23087174 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • DNA-Binding Proteins
  • Mamld1 protein, mouse
  • RNA, Messenger
  • Transcription Factors
Topics
  • Animals
  • DNA-Binding Proteins (biosynthesis)
  • Gene Expression Profiling
  • Gene Expression Regulation, Developmental
  • Leydig Cells (metabolism)
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Models, Biological
  • Models, Genetic
  • Phenotype
  • RNA, Messenger (metabolism)
  • Testis (embryology)
  • Time Factors
  • Transcription Factors (biosynthesis, deficiency)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: