HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Bone mineral density and bone strength from the mandible of chronically protein restricted rats.

AbstractUNLABELLED:
The present investigation was performed to assess the biomechanical repercussion of protein malnutrition imposed on rats between the 26th and 135th days of postnatal life on the mandible, which is not a weight-bearing bone but supports the loads related to the masticatory activity. Female Wistar rats aged 26 d (n = 14) were placed on either a 4%-protein diet (ICN 960254, P4 group) or a 20%-protein diet (ICN 960260, P20 group) and killed 111 d later. Both body weight and length were recorded regularly. The mandibles were dissected and cleaned of adhering soft tissue. Mandibular growth was estimated directly by taking measurements between anatomical points. Areal Bone Mineral Density (BMD) was estimated using a bone densitometer (LUNAR DPX-L). Mechanical properties of the right hemimandible were determined using a three-point bending mechanical test to obtain the load/deformation curve and estimate the structural properties of the bone. Results were summarized as means +/- SD. Comparisons between parameters were performed by Student's t test. A 75% reduction in body weight and a 32% reduction in body length were observed in P4 rats. Like body size, mandibular weight, length, height and area (index of mandibular size) were negatively affected by P4 diet, as was the posterior part of the bone (posterior to molar III). The anterior part (alveolar and incisor alveolar process) was not affected by age or diet. The "load capacity" extrinsic properties of the mandible (load fracture, stiffness, yielding point) were between 43% and 64% of control value in protein restricted rats. BMD was similar in both groups of animals.
CONCLUSION:
1) Chronic protein malnutrition imposed on rats from infancy to early adulthood reduces the growth of the posterior part of the mandible without inducing changes in the anterior part, which produces some deformation of the bone in relation to age-matched rats; and 2) the significant reduction of strength and stiffness of the mandible seem to be the result of an induced loss of gain in bone structural properties as a consequence of a correlative loss of gain in both growth and mass, yet not in bone material properties.
AuthorsCarlos E Bozzini, Graciela Champin, Rosa M Alippi, Clarisa Bozzini
JournalActa odontologica latinoamericana : AOL (Acta Odontol Latinoam) Vol. 24 Issue 3 Pg. 223-8 ( 2011) ISSN: 0326-4815 [Print] Argentina
PMID22550813 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Topics
  • Animals
  • Biomechanical Phenomena
  • Bone Density
  • Chronic Disease
  • Diet, Protein-Restricted
  • Female
  • Mandible (physiopathology)
  • Protein Deficiency (physiopathology)
  • Rats
  • Rats, Wistar

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: