HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

In vitro activity of ertapenem versus ceftriaxone against Neisseria gonorrhoeae isolates with highly diverse ceftriaxone MIC values and effects of ceftriaxone resistance determinants: ertapenem for treatment of gonorrhea?

Abstract
Clinical resistance to the currently recommended extended-spectrum cephalosporins (ESCs), the last remaining treatment options for gonorrhea, is being reported. Gonorrhea may become untreatable, and new treatment options are crucial. We investigated the in vitro activity of ertapenem, relative to ceftriaxone, against N. gonorrhoeae isolates and the effects of ESC resistance determinants on ertapenem. MICs were determined using agar dilution technique or Etest for international reference strains (n = 17) and clinical N. gonorrhoeae isolates (n = 257), which included the two extensively drug-resistant (XDR) strains H041 and F89 and additional isolates with high ESC MICs, clinical ESC resistance, and other types of clinical high-level and multidrug resistance (MDR). Genetic resistance determinants for ESCs (penA, mtrR, and penB) were sequenced. In general, the MICs of ertapenem (MIC(50) = 0.032 μg/ml; MIC(90) = 0.064 μg/ml) paralleled those of ceftriaxone (MIC(50) = 0.032 μg/ml; MIC(90) = 0.125 μg/ml). The ESC resistance determinants mainly increased the ertapenem MIC and ceftriaxone MIC at similar levels. However, the MIC ranges for ertapenem (0.002 to 0.125 μg/ml) and ceftriaxone (<0.002 to 4 μg/ml) differed, and the four (1.5%) ceftriaxone-resistant isolates (MIC = 0.5 to 4 μg/ml) had ertapenem MICs of 0.016 to 0.064 μg/ml. Accordingly, ertapenem had in vitro advantages over ceftriaxone for isolates with ceftriaxone resistance. These in vitro results suggest that ertapenem might be an effective treatment option for gonorrhea, particularly for the currently identified ESC-resistant cases and possibly in a dual antimicrobial therapy regimen. However, further knowledge regarding the genetic determinants (and their evolution) conferring resistance to both antimicrobials, and clear correlates between genetic and phenotypic laboratory parameters and clinical treatment outcomes, is essential.
AuthorsMagnus Unemo, Daniel Golparian, Athena Limnios, David Whiley, Makoto Ohnishi, Monica M Lahra, John W Tapsall
JournalAntimicrobial agents and chemotherapy (Antimicrob Agents Chemother) Vol. 56 Issue 7 Pg. 3603-9 (Jul 2012) ISSN: 1098-6596 [Electronic] United States
PMID22547617 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Anti-Bacterial Agents
  • beta-Lactams
  • Ceftriaxone
  • Ertapenem
Topics
  • Anti-Bacterial Agents (pharmacology)
  • Ceftriaxone (pharmacology)
  • Drug Resistance, Bacterial
  • Ertapenem
  • Gonorrhea (microbiology)
  • Humans
  • Microbial Sensitivity Tests
  • Neisseria gonorrhoeae (drug effects, pathogenicity)
  • beta-Lactams (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: