HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Elucidating polyploidization of bermudagrasses as assessed by organelle and nuclear DNA markers.

Abstract
Clarification of relationships among ploidy series of Cynodon accessions could be beneficial to bermudagrass breeding programs, and would enhance our understanding of the evolutionary biology of this warm season grass species. This study was initiated to elucidate polyploidization among Cynodon accessions with different ploidy series collected from Turkey based on chloroplast and nuclear DNA. Forty Cynodon accessions including 7 diploids, 3 triploids, 10 tetraploids, 11 pentaploids, and 9 hexaploids were analyzed using chloroplast DNA restriction fragment-length polymorphism (cpDNA RFLP), chloroplast DNA simple sequence repeat (cpDNA SSR), and nuclear DNA markers based on neighbor-joining (NJ) and principle component analyses (PCA). All three-marker systems with two statistical algorithms clustered the diploids apart from the other ploidy levels. Assuming autopolyploidy, spontaneous polyploidization followed by rapid diversification among the higher ploidy levels than the diploids is likely in Cynodon's evolution. Few tetraploid and hexaploid accessions were clustered with or closely to the group of diploids, supporting the hypothesis above. Eleven haplotypes as estimated by cpDNA RFLP and SSR markers were detected. This study indicated that the diploids had different organelle genome from the rest of the ploidy series and provided valuable insight into relationships among ploidy series of Cynodon accessions based on cp and nuclear DNAs.
AuthorsOsman Gulsen, Ahmet Ceylan
JournalOmics : a journal of integrative biology (OMICS) Vol. 15 Issue 12 Pg. 903-12 (Dec 2011) ISSN: 1557-8100 [Electronic] United States
PMID22106951 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • DNA, Chloroplast
  • DNA, Plant
  • Genetic Markers
Topics
  • Cell Nucleus (genetics)
  • Chloroplasts (genetics)
  • Cynodon (classification, genetics)
  • DNA, Chloroplast (chemistry)
  • DNA, Plant (chemistry)
  • Evolution, Molecular
  • Genetic Loci
  • Genetic Markers (genetics)
  • Phylogeny
  • Polymorphism, Restriction Fragment Length
  • Polyploidy

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: