HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

In silico analysis of single nucleotide polymorphism (SNPs) in human β-globin gene.

Abstract
Single amino acid substitutions in the globin chain are the most common forms of genetic variations that produce hemoglobinopathies--the most widespread inherited disorders worldwide. Several hemoglobinopathies result from homozygosity or compound heterozygosity to beta-globin (HBB) gene mutations, such as that producing sickle cell hemoglobin (HbS), HbC, HbD and HbE. Several of these mutations are deleterious and result in moderate to severe hemolytic anemia, with associated complications, requiring lifelong care and management. Even though many hemoglobinopathies result from single amino acid changes producing similar structural abnormalities, there are functional differences in the generated variants. Using in silico methods, we examined the genetic variations that can alter the expression and function of the HBB gene. Using a sequence homology-based Sorting Intolerant from Tolerant (SIFT) server we have searched for the SNPs, which showed that 200 (80%) non-synonymous polymorphism were found to be deleterious. The structure-based method via PolyPhen server indicated that 135 (40%) non-synonymous polymorphism may modify protein function and structure. The Pupa Suite software showed that the SNPs will have a phenotypic consequence on the structure and function of the altered protein. Structure analysis was performed on the key mutations that occur in the native protein coded by the HBB gene that causes hemoglobinopathies such as: HbC (E→K), HbD (E→Q), HbE (E→K) and HbS (E→V). Atomic Non-Local Environment Assessment (ANOLEA), Yet Another Scientific Artificial Reality Application (YASARA), CHARMM-GUI webserver for macromolecular dynamics and mechanics, and Normal Mode Analysis, Deformation and Refinement (NOMAD-Ref) of Gromacs server were used to perform molecular dynamics simulations and energy minimization calculations on β-Chain residue of the HBB gene before and after mutation. Furthermore, in the native and altered protein models, amino acid residues were determined and secondary structures were observed for solvent accessibility to confirm the protein stability. The functional study in this investigation may be a good model for additional future studies.
AuthorsMohammed Alanazi, Zainularifeen Abduljaleel, Wajahatullah Khan, Arjumand S Warsy, Mohamed Elrobh, Zahid Khan, Abdullah Al Amri, Mohammad D Bazzi
JournalPloS one (PLoS One) Vol. 6 Issue 10 Pg. e25876 ( 2011) ISSN: 1932-6203 [Electronic] United States
PMID22028795 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Solvents
  • beta-Globins
Topics
  • Amino Acid Sequence
  • Computational Biology (methods)
  • Data Mining
  • Hemoglobinopathies (genetics)
  • Humans
  • Molecular Dynamics Simulation
  • Molecular Sequence Data
  • Polymorphism, Single Nucleotide
  • Protein Structure, Secondary
  • Sequence Deletion
  • Software
  • Solvents (chemistry)
  • Thalassemia (genetics)
  • beta-Globins (chemistry, genetics, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: