HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

(E)-alkene and ethylene isosteres substantially alter the hydrogen-bonding network in class II MHC A(q)/glycopeptide complexes and affect T-cell recognition.

Abstract
The structural basis for antigen presentation by class II major histocompatibility complex (MHC) proteins to CD4(+) T-cells is important for understanding and possibly treating autoimmune diseases. In the work described in this paper, (E)-alkene and ethylene amide-bond isosteres were used to investigate the effect of removing hydrogen-bonding possibilities from the CII259-270 glycopeptide, which is bound by the arthritis-associated murine A(q) class II MHC protein. The isostere-modified glycopeptides showed varying and unexpectedly large losses of A(q) binding that could be linked to the dynamics of the system. Molecular dynamics (MD) simulations revealed that the backbone of CII259-270 and the A(q) protein are able to form up to 11 hydrogen bonds, but fewer than this number are present at any one time. Most of the strong hydrogen-bond interactions were formed by the N-terminal part of the glycopeptide, i.e., in the region where the isosteric replacements were made. The structural dynamics also revealed that hydrogen bonds were strongly coupled to each other; the loss of one hydrogen-bond interaction had a profound effect on the entire hydrogen-bonding network. The A(q) binding data revealed that an ethylene isostere glycopeptide unexpectedly bound more strongly to A(q) than the corresponding (E)-alkene, which is in contrast to the trend observed for the other isosteres. Analysis of the MD trajectories revealed that the complex conformation of this ethylene isostere was structurally different and had an altered molecular interaction pattern compared to the other A(q)/glycopeptide complexes. The introduced amide-bond isosteres also affected the interactions of the glycopeptide/A(q) complexes with T-cell receptors. The dynamic variation of the patterns and strengths of the hydrogen-bond interactions in the class II MHC system is of critical importance for the class II MHC/peptide/TCR signaling system.
AuthorsIda E Andersson, Tsvetelina Batsalova, Sabrina Haag, Balik Dzhambazov, Rikard Holmdahl, Jan Kihlberg, Anna Linusson
JournalJournal of the American Chemical Society (J Am Chem Soc) Vol. 133 Issue 36 Pg. 14368-78 (Sep 14 2011) ISSN: 1520-5126 [Electronic] United States
PMID21766871 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Alkenes
  • Ethylenes
  • Glycopeptides
  • Histocompatibility Antigens Class II
  • ethylene
Topics
  • Alkenes (chemistry)
  • Animals
  • Antigen Presentation
  • CD4-Positive T-Lymphocytes (immunology)
  • Cell Line
  • Ethylenes (chemistry)
  • Glycopeptides (chemistry, immunology)
  • Histocompatibility Antigens Class II (chemistry, immunology)
  • Hybridomas
  • Hydrogen Bonding
  • Mice
  • Protein Structure, Secondary

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: