HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Proteasome-regulated ERBB2 and estrogen receptor pathways in breast cancer.

Abstract
A major challenge to broadening oncology applications for inhibitors of the ubiquitin-proteasome system (UPS) is the identification of UPS-dependent cancer pathways predictive of tumors responsive to peptidomimetic inhibitors of its 20S core protease activity. To inform clinical studies evaluating UPS inhibitors as breast cancer therapeutics, seven phenotypically diverse human breast cancer cell line models were characterized for their cellular and molecular responses to the clinically approved 20S inhibitor bortezomib (PS341; Velcade), focusing on those overexpressing estrogen receptor (ER) or ERBB2/HER2, because these oncogenic receptor pathways are constitutively activated in approximately 80% of all breast cancers. All models demonstrated dose-dependent bortezomib reduction in intracellular 20S activity correlating with cell growth inhibition, and bortezomib IC(50) values (concentrations producing 50% growth inhibition) varied directly with pretreatment 20S activities (r = 0.74; *, p < 0.05), suggesting that basal 20S activity may serve as a clinical predictor of tumor responsiveness to UPS inhibition. Reduction in 20S activity (> 60%) was associated with early (24 h) intracellular relocalization of ER (nucleus to cytoplasm) and ERBB2 (plasma membrane to perinuclear lysosomes), buildup of ubiquitinated and Hsp70-associated receptor, degradation and loss of ER and ERBB2 function, and induction of cellular apoptosis. These models were also used to screen a pharmacologic panel of pathway-targeted anticancer agents [4-hydroxy-3-methoxy-5-(benzothiazolylthiomethyl)benzylidenecyanoacetamide (AG825), 6-(4-bromo-2-chloro-phenylamino)-7-fluoro-3-methyl-3H-benzoimidazole-5-carboxylic acid (2-hydroxy-ethoxy)-amide (AZD6244/ARRY142886), 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one hydrochloride (LY294002), 17-N-allylamino-17-demethoxy geldanamycin (17AAG), and (2E)-N-hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1H-indol-3-yl)ethyl]amino]methyl]phenyl]-2-propenamide (LAQ824)] for those capable of sensitizing to bortezomib. In keeping with the observation that 20S reduction has little effect on mitogen-activated protein kinase kinase 1/2 (MEK1/2) signaling in either ER-positive or ERBB2-positive models, only the MEK-1/2 inhibitor AZD6244 consistently improved the antitumor activity of bortezomib.
AuthorsCorina Marx, Christina Yau, Surita Banwait, Yamei Zhou, Gary K Scott, Byron Hann, John W Park, Christopher C Benz
JournalMolecular pharmacology (Mol Pharmacol) Vol. 71 Issue 6 Pg. 1525-34 (Jun 2007) ISSN: 0026-895X [Print] United States
PMID17392524 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Antineoplastic Agents
  • Boronic Acids
  • Proteasome Inhibitors
  • Pyrazines
  • Receptors, Estrogen
  • Bortezomib
  • Receptor, ErbB-2
  • Proteasome Endopeptidase Complex
Topics
  • Antineoplastic Agents (pharmacology)
  • Apoptosis (drug effects)
  • Boronic Acids (pharmacology)
  • Bortezomib
  • Breast Neoplasms (drug therapy, metabolism)
  • Drug Therapy, Combination
  • Humans
  • Oxidation-Reduction
  • Proteasome Endopeptidase Complex (physiology)
  • Proteasome Inhibitors
  • Pyrazines (pharmacology)
  • Receptor, ErbB-2 (metabolism)
  • Receptors, Estrogen (metabolism)
  • Transcription, Genetic (drug effects)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: