HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Don't get too excited: mechanisms of glutamate-mediated Purkinje cell death.

Abstract
Purkinje cells (PCs) present a unique cellular profile in both the cerebellum and the brain. Because they represent the only output cell of the cerebellar cortex, they play a vital role in the normal function of the cerebellum. Interestingly, PCs are highly susceptible to a variety of pathological conditions that may involve glutamate-mediated 'excitotoxicity', a term coined to describe an excessive release of glutamate, and a subsequent over-activation of excitatory amino acid (NMDA, AMPA, and kainite) receptors. Mature PCs, however, lack functional NMDA receptors, the means by which Ca(2+) enters the cell in classic hippocampal and cortical models of excitotoxicity. In PCs, glutamate predominantly mediates its effects, first via a rapid influx of Ca(2+)through voltage-gated calcium channels, caused by the depolarization of the membrane after AMPA receptor activation (and through Ca(2+)-permeable AMPA receptors themselves), and second, via a delayed release of Ca(2+) from intracellular stores. Although physiological levels of intracellular free Ca(2+) initiate vital second messenger signaling pathways in PCs, excessive Ca(2+) influx can detrimentally alter dendritic spine morphology via interactions with the neuronal cytoskeleton, and thus can perturb normal synaptic function. PCs possess various calcium-binding proteins, such as calbindin-D28K and parvalbumin, and glutamate transporters, in order to prevent glutamate from exerting deleterious effects. Bergmann glia are gaining recognition as key players in the clearance of extracellular glutamate; these cells are also high in S-100beta, a protein with both neurodegenerative and neuroprotective abilities. In this review, we discuss PC-specific mechanisms of glutamate-mediated excitotoxic cell death, the relationship between Ca(2+) and cytoskeleton, and the implications of glutamate, and S-100beta for pathological conditions, such as traumatic brain injury.
AuthorsJennifer E Slemmer, Chris I De Zeeuw, John T Weber
JournalProgress in brain research (Prog Brain Res) Vol. 148 Pg. 367-90 ( 2005) ISSN: 0079-6123 [Print] Netherlands
PMID15661204 (Publication Type: Journal Article, Review)
Chemical References
  • Neurotoxins
  • Glutamic Acid
Topics
  • Animals
  • Cell Death (physiology)
  • Cerebellar Diseases (pathology, physiopathology)
  • Glutamic Acid (physiology)
  • Humans
  • Neurotoxins
  • Purkinje Cells (pathology, physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: