HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Up-regulation of organic anion transporter 1 protein is induced by chronic furosemide or hydrochlorothiazide infusion in rat kidney.

AbstractBACKGROUND:
Thiazide and loop diuretics are secreted from the proximal tubule via the organic anion transport system to reach their principal sites of action. Recently, a multispecific organic anion transporter 1 (OAT1) was identified in rat kidney and was localized to the basolateral membrane of the S2 segment in the proximal tubule. We postulated that interactions between thiazide or loop diuretics and OAT1 may play a role in the adaptation to long-term diuretic use, and investigated whether OAT1 is regulated in vivo by chronic administration of diuretics at the protein level.
METHODS:
Semi-quantitative immunoblotting and immunohistochemistry were carried out in kidneys from male Sprague-Dawley rats using a polyclonal peptide-derived antibody to OAT1. Furosemide (12 mg/day/rat, n = 6), hydrochlorothiazide (3.75 mg/day/rat, n = 6) or vehicle (1.7% ethanolamine, n = 6) were infused subcutaneously for 7 days using osmotic minipumps. Experimental and vehicle-control rats were pair-fed, and two bottles of drinking water were provided, one containing tap water and the other containing a solution of 0.8% NaCl with 0.1% KCl.
RESULTS:
Overt diuretic responses were observed to both furosemide and hydrochlorothiazide infusions. There were no differences in body weight or creatinine clearance between the experimental and control rats. Although OAT1 protein abundance in cortical homogenates was increased by furosemide infusion (271 +/- 35 vs 100 +/- 15%, P < 0.05), Na-K-ATPase alpha1 subunit protein abundance was not affected (113 +/- 14 vs 100 +/- 8%, P = 0.42). Immunohistochemical localization in tissue sections confirmed a strong increase in OAT1 expression in the basolateral membrane of the S2 segment of proximal tubule. OAT1 protein abundance in cortical homogenates was also increased by hydrochlorothiazide infusion (181 +/- 25 vs 100 +/- 7%, P < 0.01), whereas Na-K-ATPase alpha1 subunit protein abundance was not affected (105 +/- 4 vs 100 +/- 4%, P = 0.34).
CONCLUSION:
Chronic furosemide or hydrochlorothiazide infusion caused increases in OAT1 protein abundance in rat kidney. These results suggest that OAT1 may be up-regulated in vivo by substrate stimulation at the protein level.
AuthorsGheun-Ho Kim, Ki Young Na, So-Young Kim, Kwon Wook Joo, Yoon Kyu Oh, Seoung-Wan Chae, Hitoshi Endou, Jin Suk Han
JournalNephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association (Nephrol Dial Transplant) Vol. 18 Issue 8 Pg. 1505-11 (Aug 2003) ISSN: 0931-0509 [Print] England
PMID12897087 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Diuretics
  • Organic Anion Transport Protein 1
  • Sodium Chloride Symporter Inhibitors
  • Hydrochlorothiazide
  • Furosemide
Topics
  • Animals
  • Diuretics (pharmacology)
  • Furosemide (pharmacology)
  • Hydrochlorothiazide (pharmacology)
  • Immunoblotting
  • Immunohistochemistry
  • Kidney (metabolism)
  • Kidney Cortex (metabolism)
  • Male
  • Organic Anion Transport Protein 1 (metabolism, physiology)
  • Rats
  • Rats, Sprague-Dawley
  • Sodium Chloride Symporter Inhibitors (pharmacology)
  • Up-Regulation (drug effects)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: