HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Metabolic approaches to the treatment of ischemic heart disease: the clinicians' perspective.

Abstract
This review article discusses pharmacological approaches to optimizing myocardial metabolism during ischemia. Fatty acids are the main fuel for the healthy heart, with a lesser contribution coming from the oxidation of glucose and lactate. Myocardial ischaemia dramatically alters fuel metabolism, causing an accelerated rate of glucose conversion to lactate and a switch from lactate uptake by the heart to lactate production. This causes a dramatic disruption in cell homeostasis (e.g. lactate accumulation and a decrease in pH and ATP). Paradoxically, moderately ischemic tissue (approximately 50% of normal flow) continues to derive most of its energy (50-70%) from the oxidation of fatty acids despite a high rate of lactate production. This ischaemia-induced disruption in cardiac metabolism can be minimized by metabolic agents that reduce fatty acid oxidation and increase the combustion of glucose and lactate, resulting in clinical benefit to the ischemic patient. Agents that inhibit fatty acid beta-oxidation, such as ranolazine and trimetazidine, have proven to be effective in the treatment of stable angina. Treatment of acute myocardial infarction patients with an infusion of the glucose-insulin-potassium, which results in suppression of myocardial fatty acid oxidation and greater glucose combustion, has proven effective in reducing mortality. These metabolic therapies are free of direct hemodynamic or chronotropic effects, and thus are well positioned for use alongside traditional agents such as beta-adrenergic receptor antagonists or calcium channel antagonists.
AuthorsAndrew A Wolff, Heschi H Rotmensch, William C Stanley, Roberto Ferrari
JournalHeart failure reviews (Heart Fail Rev) Vol. 7 Issue 2 Pg. 187-203 (Apr 2002) ISSN: 1382-4147 [Print] United States
PMID11988642 (Publication Type: Journal Article, Review)
Topics
  • Humans
  • Myocardial Ischemia (metabolism, physiopathology, therapy)
  • Myocardium (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: