Impairment of GH responsiveness to GH-releasing hexapeptide (GHRP-6) in Prader-Willi syndrome.

The aim of this study was to evaluate the GH-releasing activity of a synthetic hexapeptide, GHRP-6, in the Prader-Willi syndrome (PWS). Sixteen PWS patients (7 males and 9 females, aged 12.7-38.3 yr), 15 with essential obesity (OB) (7 males and 8 females, aged 12.9-42.9 yr), and 8 short normal children (SN; 3 males and 5 females, aged 10.2-14.3 yr) underwent 2 tests on separate occasions, being challenged with GHRP-6 (1 microg/kg, iv) or GHRH (1 microg/kg, iv)+PD (60 or 120 mg for children or adults, po). Moreover, in 11 patients with PWS and in the group of SN, the GH response to at least 2 stimulation tests had been previously determined. GH was analyzed either as mean peak values (GHp, mcg/l), or as the area under the curve (AUC, mcg/l/h) and the net incremental area under the curve (nAUC, mcg/l/h). In the group of PWS subjects, GH responses to both GHRP-6 (GHp: 11.4+/-2.0; AUC: 588+/-113; nAUC: 483+/-108) and GHRH+PD (GHp: 7.3+/-1.8; AUC: 486+/-122; nAUC: 371+/-250) were significantly lower than those observed either in OB (GHRP-6: GHp: 25.7+/-3.2, p<0.003; AUC: 1833+/-305, p<0.005; nAUC: 1640+/-263, p<0.0001. GHRH+PD: GHp: 15.1+/-2.4, p<0.009; AUC: 1249+/-248, p<0.003; nAUC: 918+/-230, p<0.006) or in SN patients (GHRP-6: GHp: 39.1+/-3.1, p<0.0001; AUC: 2792+/-158, p<0.0001; nAUC: 2705+/-165, p<0.00005. GHRH+PD: GHp: 27.5+/-3.7, p<0.0001; AUC: 1873+/-251, p<0.0001; nAUC: 1692+/-219, p<0.0005). Unlike control groups, in PWS patients GH levels after GHRP-6 did not differ from those obtained after GHRH+PD. Interestingly, low IGF-I values were present in all PWS subjects. Furthermore, no patient with PWS showed normal GH response to the previously performed GH stimulation tests. As already reported, GH release after GHRP-6 or GHRH+PD was significantly lower in OB than in SN subjects. In conclusion, our data indicate that: 1) GH response to GHRP-6 is clearly impaired in PWS; 2) the blunted GH responses to the provocative stimuli in PWS are not an artifact of obesity; 3) short stature in PWS is caused by a complex dysfunction of the hypothalamo-pituitary structures.
AuthorsG Grugni, G Guzzaloni, F Morabito
JournalJournal of endocrinological investigation (J Endocrinol Invest) Vol. 24 Issue 5 Pg. 340-8 (May 2001) ISSN: 0391-4097 [Print] Italy
PMID11407654 (Publication Type: Journal Article)
Chemical References
  • Oligopeptides
  • Human Growth Hormone
  • Insulin-Like Growth Factor I
  • growth hormone releasing hexapeptide
  • Growth Hormone-Releasing Hormone
  • Pyridostigmine Bromide
  • Adolescent
  • Adult
  • Body Mass Index
  • Child
  • Female
  • Growth Hormone-Releasing Hormone
  • Human Growth Hormone (blood)
  • Humans
  • Insulin-Like Growth Factor I (analysis)
  • Kinetics
  • Male
  • Obesity (complications)
  • Oligopeptides
  • Prader-Willi Syndrome (blood, complications)
  • Pyridostigmine Bromide

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research network!

Choose Username:
Verify Password: