HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A commentary on glial cell line-derived neurotrophic factor (GDNF). From a glial secreted molecule to gene therapy.

Abstract
Glial cell line-derived neurotrophic factor (GDNF) was identified as a consequence of the hypothesis that glia secrete factors that influence growth and differentiation of specific classes of neurons. Glia are a likely source of additional neurotrophic factors; however, this strategy has not been applied extensively. The discovery of GDNF in 1993 led to an abundance of studies that within only a few years qualified GDNF as a bona fide neurotrophic factor. Of particular interest are studies demonstrating the effectiveness of GDNF protein in ameliorating neurodegeneration in animal models of Parkinson's disease and amyotrophic lateral sclerosis (ALS). It remains to be determined whether GDNF will be an effective therapy in humans with these diseases. However, since these diseases are slowly progressive and the CNS relatively inaccessible, the delivery of GDNF as a therapeutic molecule to the CNS in a chronic manner is problematic. Studies addressing this problem are applying viral vector mediated transfer of the GDNF gene to the CNS in order to deliver biosynthesized GDNF to a specific location in a chronic manner. Recent studies suggest that these GDNF gene therapy approaches are effective in rat models of Parkinson's disease. These studies are reviewed in the context of what developments will be needed in order to apply GDNF gene therapy to the clinic.
AuthorsM C Bohn
JournalBiochemical pharmacology (Biochem Pharmacol) Vol. 57 Issue 2 Pg. 135-42 (Jan 15 1999) ISSN: 0006-2952 [Print] England
PMID9890561 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S., Review)
Chemical References
  • GDNF protein, human
  • Glial Cell Line-Derived Neurotrophic Factor
  • Nerve Growth Factors
  • Nerve Tissue Proteins
  • Dopamine
Topics
  • Animals
  • Dopamine (physiology)
  • Genetic Therapy
  • Glial Cell Line-Derived Neurotrophic Factor
  • Humans
  • Motor Neuron Disease (drug therapy)
  • Nerve Growth Factors (genetics, metabolism)
  • Nerve Tissue Proteins (genetics, metabolism, therapeutic use)
  • Neuroglia (metabolism)
  • Neurons (physiology)
  • Parkinson Disease (drug therapy)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: