HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Voluntary wheel running decreases adipose tissue mass and expression of leptin mRNA in Osborne-Mendel rats.

Abstract
The purpose of this study was to assess the effects of voluntary wheel running on the expression of leptin mRNA in rats that are either sensitive (OM) or resistant (S5B/Pl) to diet-induced obesity. Male OM and S5B/Pl rats had ad libitum access to standard rodent diet and water. At 3-5 weeks of age, animals of both strains were randomly assigned to either an exercise or sedentary control group. The exercise groups had 24-h access to a running wheel, and they trained for 7 weeks. During weeks 1-4, animals in both OM and S5B/Pl exercise groups progressively increased their running. During weeks 5-7, S5B/Pl exercisers tended to run more than did OM (approximately 60 vs. 45 km/week), but by the end of the study both groups had an equally greater heart weight (mg/g body weight) and planteris citrate synthase activity than their sedentary controls. Oral glucose tolerance tests performed during the last week of training revealed that compared with their appropriate controls, insulin sensitivity was enhanced (P < 0.05) in OM but not in the S5B/Pl wheel-running groups. Inguinal, epididymal, and retroperitoneal fat pads weighed less in the running than in the nonrunning groups of both strains (P < 0.01). Additionally, exercised animals had an increased percentage of smaller cells (40-60 microm; P < 0.05) and a decreased percentage of larger cells (120-160 microm; P < 0.05) in the epididymal fat depot. Epididymal leptin mRNA measured by Northern blot analysis was reduced in the exercise-trained rats of both strains (P < 0.05). Furthermore, serum leptin was reduced in exercise-trained compared with the control animals of both strains. In comparison to S5B/Pl, control OM animals exhibited both a higher expression and higher circulating levels of leptin (P < 0.05). While serum leptin levels were decreased and food intake was increased in the exercise-trained animals of both strains (P < 0.05), the exact relationship between exercise, leptin, and food intake in this rat model of dietary obesity remains to be determined. Nonetheless, these results suggest that the expression and secretion of leptin can be influenced by exercise training and that these changes (i.e., reduced expression and secretion of protein) can occur independently of changes in whole-body insulin sensitivity and susceptibility to diet-induced obesity.
AuthorsJ J Zachwieja, S L Hendry, S R Smith, R B Harris
JournalDiabetes (Diabetes) Vol. 46 Issue 7 Pg. 1159-66 (Jul 1997) ISSN: 0012-1797 [Print] United States
PMID9200651 (Publication Type: Comparative Study, Journal Article)
Chemical References
  • Blood Glucose
  • Insulin
  • Leptin
  • Proteins
  • RNA, Messenger
Topics
  • Adipose Tissue (physiology)
  • Animals
  • Blood Glucose (analysis, metabolism)
  • Disease Models, Animal
  • Gene Expression (genetics)
  • Insulin (blood, metabolism)
  • Leptin
  • Male
  • Motor Activity (genetics, physiology)
  • Obesity (blood, physiopathology)
  • Proteins (analysis, genetics)
  • RNA, Messenger (analysis, genetics)
  • Random Allocation
  • Rats
  • Rats, Inbred Strains
  • Time Factors

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: