HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Augmentation of femoral neck fracture fixation with an injectable calcium-phosphate bone mineral cement.

Abstract
The first goal of this study was to determine if augmentation with an injectable, in situ setting, calcium-phosphate cement that is capable of being remodeled and was designed to mimic bone mineral significantly improved the strength and stiffness of fixation in a cadaveric femoral neck fracture model. The second goal was to determine if greater increases in fixation strength were achieved as the bone density of the specimen decreased. Sixteen pairs of fresh cadaveric human femora with a mean age of 70.9 years (SD = 17.2 years) were utilized. The bone density of the femoral neck was measured with dual-energy x-ray absorptiometry. The femoral head was impacted vertically with the femoral shaft fixed in 12 degrees of adduction using a materials testing machine to create a fully displaced fracture. Following fracture, 30% inferior comminution was created in each specimen. One randomly chosen femur from each pair underwent anatomic reduction and fixation with three cannulated cancellous bone screws, 7 mm in diameter, in an inverted triangle configuration. The contralateral femur underwent the same fixation augmented with calcium-phosphate cement. Specimens were preconditioned followed by 1.000 cycles to one body weight (611.6 N) at 0.5 Hz to simulate single-limb stance loading. The stiffness in the first cycle was observed to be significantly greater in cement-augmented specimens compared with unaugmented controls (p < 0.05). After cycling, each specimen was loaded at 10 mm/min until complete displacement of the fracture surface and failure of fixation occurred. Specimens augmented with bone mineral cement failed at a mean of 4,573 N (SD = 1,243 N); this was significantly greater (p < 0.01) than the mean for controls (3,092 N, SD = 1,258 N). The relative improvement in fixation strength (augmented/control x 100%) was not inversely correlated to femoral neck bone density (p = 0.25, R2 = 0.09), was weakly correlated to the volume of cement injected (p = 0.07, R2 = 0.22), and was inversely related to the fixation failure load of the control specimen (p = 0.001, R2 = 0.54). There was a mean relative improvement in fixation strength of 169.6% (SD = 77.5). These findings suggest that calcium-phosphate cement provides initial beneficial augmentation to fixation of femoral neck fractures.
AuthorsC J Stankewich, M F Swiontkowski, A F Tencer, D N Yetkinler, R D Poser
JournalJournal of orthopaedic research : official publication of the Orthopaedic Research Society (J Orthop Res) Vol. 14 Issue 5 Pg. 786-93 (Sep 1996) ISSN: 0736-0266 [Print] United States
PMID8893773 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Bone Cements
  • Calcium Phosphates
  • Minerals
  • alpha-tricalcium phosphate
  • tetracalcium phosphate
  • calcium phosphate, monobasic, anhydrous
  • calcium phosphate
  • calcium phosphate, dibasic, anhydrous
Topics
  • Adult
  • Aged
  • Aged, 80 and over
  • Bone Cements
  • Bone Density (physiology)
  • Bone Screws
  • Calcium Phosphates (administration & dosage)
  • Female
  • Femoral Neck Fractures (surgery)
  • Femur (chemistry, injuries, surgery)
  • Fracture Fixation
  • Hip (physiology)
  • Humans
  • Injections
  • Male
  • Materials Testing
  • Middle Aged
  • Minerals (analysis)
  • Weight-Bearing (physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: