HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Prevention of ischemia/reperfusion-induced alterations in synaptosomal membrane-associated proteins and lipids by N-tert-butyl-alpha-phenylnitrone and difluoromethylornithine.

Abstract
Previous studies in our laboratory demonstrated the alteration in the physical state of synaptosomal membrane lipids and proteins in ischemia/reperfusion injury using selective spin labels and electron paramagnetic resonance spectroscopy [Hall et al. (1995) Neuroscience 61, 84-89]. Since many investigations have provided evidence for free radical generation during ischemia/reperfusion injury, we investigated whether a free radical scavenger would prevent the membrane damage, in gerbils. Further, experiments to determine if a secondary effect of polyamine generation at 14 h reperfusion could be blocked by this free radical scavenger or by an inhibitor of ornithine decarboxylase were also carried out. The alterations in synaptosomal membrane integrity observed during ischemia/reperfusion injury were selectively neutralized by treatment with the free radical spin trap N-tert-butyl-alpha-phenylnitrone or an inhibitor of ornithine decarboxylase, difluoromethylornithine. Administration of N-tert-butyl-alpha-phenylnitrone prior to ischemia totally abrogated both lipid and protein alterations observed at 1 and 14 h reperfusion. Pretreatment with difluoromethylornithine neutralized only the 14 h change in lipid label motion. Treatment with N-tert-butyl-alpha-phenylnitrone at 6 h post ischemia showed only a slight attenuation of the 14 h lipid effect and no change in the protein effect. Difluoromethylornithine treatment at 6 h post ischemia negated the 14 h ischemia/reperfusion injury-induced lipid effect and had no effect on the protein change. These data support previous suggestions that free radicals and polyamines play a critical role in neuronal damage and cell loss following ischemia/reperfusion injury and that the polyamine effect is dependent upon free radical generation during ischemia/reperfusion injury.
AuthorsN C Hall, J M Carney, M Cheng, D A Butterfield
JournalNeuroscience (Neuroscience) Vol. 69 Issue 2 Pg. 591-600 (Nov 1995) ISSN: 0306-4522 [Print] United States
PMID8552252 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Free Radical Scavengers
  • Membrane Proteins
  • Eflornithine
Topics
  • Analysis of Variance
  • Animals
  • Brain Ischemia (prevention & control)
  • Dose-Response Relationship, Drug
  • Eflornithine (pharmacology)
  • Free Radical Scavengers (pharmacology)
  • Gerbillinae
  • Lipid Metabolism
  • Male
  • Membrane Proteins (drug effects)
  • Synaptosomes (drug effects)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: