HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Myocardial ischemic contracture. Metabolites affect rigor tension development and stiffness.

Abstract
Myocardial ischemia is characterized by a decrease in phosphocreatine (PCr) and Mg(2+)-ATP contents as well as an accumulation of myosin ATPase reaction products (inorganic phosphate [P(i)], protons, and Mg(2+)-ADP). The possibility that these metabolites play a role in rigor tension development was checked in rat ventricular Triton X-100-skinned fibers. Rigor tension was induced by stepwise decreasing [Mg(2+)-ATP] in the presence or in the absence of 12 mmol/L PCr. To mimic the diastolic ionic environment of the myofibrils, [free Ca2+] was set at 100 nmol/L (pCa 7); [free Mg2+], at 1 mmol/L; and ionic strength, at 160 mmol/L. In control conditions (pH 7.1, with no added P(i) or Mg(2+)-ADP), the pMg(2+)-ATP for half-maximal rigor tension (pMg(2+)-ATP50) was 5.07 +/- 0.03 in the presence of PCr. After withdrawal of PCr, the pMg2+)-ATP50 value was shifted toward higher Mg(2+)-ATP values (3.57 +/- 0.03). Addition of 20 mmol/L P(i) shifted the pMg(2+)-ATP50 to 3.71 +/- 0.04 (P < .05) in the absence of PCr and in the opposite direction to 4.98 +/- 0.02 (P < .01) in the presence of PCr. Acidic pH (6.6) strongly increased pMg(2+)-ATP50 in both the absence (3.90 +/- 0.03, P < .001) and presence (5.44 +/- 0.02, P < .001) of PCr. Conversely, Mg(2+)-ADP (250 mumol/L) decreased pMg(2+)-ATP50 to 3.26 +/- 0.06 (P < .001) in the absence of PCr; at pMg(2+)-ATP 4, no rigor tension was observed until PCr concentration was decreased to < 2 mmol/L. At acidic pH, maximal rigor tension was lower by 29% compared with control conditions, whereas in the presence of Mg(2+)-ADP, maximal rigor tension developed to 143% of the control value; P(i) had no effect. The tension-to-stiffness (measured by the quick length-change technique) ratio was lower in rigor (no PCr and pMg(2+)-ATP 6) than during Ca2+ activation in the presence of both PCr and ATP. Compared with control rigor conditions, this parameter was unchanged by Mg(2+)-ADP and decreased by acidic pH, suggesting a proton-induced decrease in the amount of force per crossbridge. In addition to their known effects on active tension, Mg(2+)-ADP and protons affect rigor tension and influence ischemic contracture development. It is concluded that ischemic contracture and increased myocardial stiffness may be mediated by a decreased PCr and local Mg(2+)-ADP accumulation. This emphasizes the importance of myofibrillar creatine kinase activity in preventing ischemic contracture.
AuthorsR Ventura-Clapier, V Veksler
JournalCirculation research (Circ Res) Vol. 74 Issue 5 Pg. 920-9 (May 1994) ISSN: 0009-7330 [Print] United States
PMID8156639 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Phosphocreatine
  • Phosphorus
  • Adenosine Diphosphate
  • Adenosine Triphosphate
  • Creatine Kinase
Topics
  • Adenosine Diphosphate (metabolism, pharmacology)
  • Adenosine Triphosphate (metabolism, pharmacology)
  • Animals
  • Contracture (physiopathology)
  • Creatine Kinase (metabolism)
  • Hydrogen-Ion Concentration
  • Myocardial Contraction (physiology)
  • Myocardial Ischemia (metabolism, physiopathology)
  • Papillary Muscles (physiopathology)
  • Phosphocreatine (metabolism)
  • Phosphorus (pharmacology)
  • Phosphorylation
  • Rats

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: