HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Rapid and efficient molecular analysis of gyrate atrophy using denaturing gradient gel electrophoresis.

AbstractPURPOSE:
A generalized biochemical deficiency of the mitochondrial matrix enzyme ornithine aminotransferase (OAT) is the inborn error in gyrate atrophy (GA), an autosomal recessive blinding disease of the retina and choroid of the eye. Because mutations in the OAT gene show a high degree of molecular heterogeneity in GA, the authors set out to determine the mutations by rapid and efficient methods.
METHODS:
The mutations in the OAT gene were determined by a combination of polymerase chain reaction (PCR) amplification of gene sequences, analysis by denaturing gradient gel electrophoresis (DGGE), and direct DNA sequencing.
RESULTS:
Eleven different mutations in 21 (95.5%) out of 22 mutant OAT alleles from 11 patients were identified: six missense mutations, three nonsense mutations, one 2 bp-deletion, and one splice acceptor mutation. A silent polymorphism of Asn (AAC)378 to Asn (AAT) was also observed. CONCLUSIONS. The combination of PCR amplification of the gene sequences, DGGE analysis, and direct sequencing is a rapid and efficient method for detection of mutations in GA cases. The diversity of the mutations attests to the enormous genetic heterogeneity in this disease.
AuthorsY Mashima, T Shiono, G Inana
JournalInvestigative ophthalmology & visual science (Invest Ophthalmol Vis Sci) Vol. 35 Issue 3 Pg. 1065-70 (Mar 1994) ISSN: 0146-0404 [Print] United States
PMID8125717 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • DNA Primers
  • DNA
  • Ornithine-Oxo-Acid Transaminase
Topics
  • Alleles
  • Base Sequence
  • DNA (analysis)
  • DNA Mutational Analysis
  • DNA Primers
  • Electrophoresis, Polyacrylamide Gel
  • Gyrate Atrophy (enzymology)
  • Humans
  • Mitochondria (enzymology)
  • Molecular Biology
  • Molecular Sequence Data
  • Mutation
  • Ornithine-Oxo-Acid Transaminase (genetics)
  • Polymerase Chain Reaction
  • Polymorphism, Genetic
  • Protein Denaturation

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: