HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention.

Abstract
The aim of this study was to optimize the properties of a lubricious bioerodible hydrogel barrier for the prevention of postoperative adhesions. Water-soluble macromers based on block copolymers of poly(ethylene glycol) (PEG) and poly(lactic acid) or poly(glycolic acid) with terminal acrylate groups were used, and these macromers were gelled in vivo by exposure to long wavelength ultraviolet light. The precursor was photopolymerized from buffered saline solution while in contact with the tissues. This resulted in the conformal coating of the tissue with an adherent hydrogel film, while forming a nonadhesive barrier at the free surface, on the treated wound site. The hydrogels were evaluated in two animal models of postsurgical adhesions, first in a rat cecum abrasion model and then in a rabbit uterine horn ischemia model. In the rat cecum model, six of seven animals treated with a hydrogel, with glycolide in the precursor as the comonomer, showed no adhesions; untreated animals and animals treated with precursor, but not gelled with light, showed consistent dense adhesions. In the rabbit uterine horn ischemia model, using hydrogels with lactide in the precursor as the comonomer, and PEG of molecular weight from 6,000 to 18,500 Da, adhesions were dramatically reduced, with occurrence in none of seven animals treated with a gel containing PEG 10,000. By contrast, the seven animals in the control group demonstrated a mean of 35% involvement of the horn length in dense, fibrous adhesions. These materials, photopolymerized in vivo in direct contact with the tissues, appear to form an adherent hydrogel barrier that is highly effective in reducing postoperative adhesions in the models used.(ABSTRACT TRUNCATED AT 250 WORDS)
AuthorsA S Sawhney, C P Pathak, J J van Rensburg, R C Dunn, J A Hubbell
JournalJournal of biomedical materials research (J Biomed Mater Res) Vol. 28 Issue 7 Pg. 831-8 (Jul 1994) ISSN: 0021-9304 [Print] United States
PMID8083251 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Hydrogel, Polyethylene Glycol Dimethacrylate
  • Polyethylene Glycols
Topics
  • Animals
  • Cecal Diseases (pathology, prevention & control)
  • Disease Models, Animal
  • Female
  • Hydrogel, Polyethylene Glycol Dimethacrylate
  • Ischemia (pathology, prevention & control)
  • Light
  • Male
  • Materials Testing
  • Polyethylene Glycols (chemical synthesis, chemistry, therapeutic use)
  • Postoperative Complications (prevention & control)
  • Rabbits
  • Rats
  • Rats, Sprague-Dawley
  • Tissue Adhesions (pathology, prevention & control)
  • Uterus (blood supply)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: