HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Expression of biologically active human factor IX in human hematopoietic cells after retroviral vector-mediated gene transduction.

Abstract
Gene therapy is a potential treatment for hemophilia, wherein cells transduced with a normal factor IX gene could provide a continuous in vivo source of circulating factor IX. In this study, we examined the potential use of hematopoietic cells as a target for factor IX gene therapy. Human myeloid leukemia cells (HL-60) were transduced by retroviral vectors carrying a normal human factor IX cDNA under control of either the Moloney murine leukemia virus long terminal repeat (MoMuLV LTR) (LIXSN), the SV40 promoter (LNSVIX), or a cytomegalovirus (CMV) promoter (LNCIX). Factor IX production was measured in the transduced cells both in the uninduced state and after induction of granulocytic differentiation [with dimethylsulfoxide (DMSO)] or monocytoid differentiation [with phorbol myristic acetate (PMA)]. Transcription of factor IX from the MoMuLV LTR was seen in all cells, with a two-fold increase upon differentiation. Induction with PMA led to an 8- to 15-fold increase in factor IX transcripts from an internal CMV promoter. No factor IX transcripts from the internal SV40 promoter were detected. Immunoreactive factor IX protein was identified by Western blot from induced HL-60 cells transduced by either LIXSN or LNCIX. Factor IX production by HL-60 cells transduced by LNCIX ranged from 38-93 ng/10(6) cells/24 hr following induction of monocytic differentiation. The factor IX antigen titer was directly related to factor IX coagulant titer (r = 0.98; p < 0.001). These data indicate that human myelomonocytic cells are capable of performing the necessary post-translational modifications to produce functional factor IX.(ABSTRACT TRUNCATED AT 250 WORDS)
AuthorsQ L Hao, P Malik, R Salazar, H Tang, E M Gordon, D B Kohn
JournalHuman gene therapy (Hum Gene Ther) Vol. 6 Issue 7 Pg. 873-80 (Jul 1995) ISSN: 1043-0342 [Print] United States
PMID7578406 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Coagulants
  • Factor IX
  • Tetradecanoylphorbol Acetate
Topics
  • Blotting, Northern
  • Coagulants (metabolism)
  • Factor IX (biosynthesis, genetics, immunology)
  • Gene Transfer Techniques
  • Genetic Vectors
  • HL-60 Cells
  • Hematopoietic System (metabolism)
  • Humans
  • Retroviridae (genetics)
  • Tetradecanoylphorbol Acetate (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: