HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

On the mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA).

Abstract
The mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA) was investigated in 10 patients, each of whom had impaired proximal renal tubular reabsorption of bicarbonate as judged from a greater than 15-20% reduction of renal tubular bicarbonate reabsorption (THCO(3) (-)) at normal plasma bicarbonate concentrations. When the plasma bicarbonate concentration ([HCO(3) (-)]p) was experimentally increased to normal levels in three patients with a fractional potassium excretion (C(K)/C(in)) of less than 1.0 during acidosis, C(K)/C(in) and urinary potassium excretion (U(K)V/C(in)) increased strikingly and concurrently with a striking increase in urinary sodium (U(Na)V/C(in)) and bicarbonate (U(HCO3-)V/C(in)) excretion. When [HCO(3) (-)]p was increased to normal levels in two patients with a C(K)/C(in) of greater than 1.0 during acidosis and in whom U(Na)V/C(in) and U(HCO3-)V/C(in) were already markedly increased, C(K)/C(in) did not increase further. When [HCO(3) (-)]p was decreased to subnormal levels in a patient given ammonium chloride, U(K)V/C(in), C(K)/C(in), and U(HCO3-)V/C(in) decreased concurrently. In the six patients in whom [HCO(3) (-)]p was maintained at normal levels (oral alkali therapy) for 2 months or longer, C(K)/C(in) was directly related to the urinary excretion rates of sodium and bicarbonate, hence was directly related to the magnitude of reduction of THCO(3) (-) at normal [HCO(3) (-)]p; C(K)/C(in) was greater than 0.55 in all six patients and greater than 1.0 in four. In eight patients with classic RTA (type 1 RTA), proximal renal tubular reabsorption of bicarbonate was largely intact as judged from a trivial reduction of THCO(3) (-) at normal [HCO(3) (-)]p. When [HCO(3) (-)]p was either increased from subnormal to normal levels, or decreased from normal to subnormal levels, U(HCO3-)V/C(in) remained essentially constant, and U(K)V/C(in) did not change significantly. When correction of acidosis was sustained, U(HCO3-)V/C(in) remained a trivial fraction of that filtered, and C(K)/C(in) was consistently less than 0.55. These results provide evidence that renal potassium wasting in type 2 RTA is physiologically separable from that in type 1 RTA and in part the result of a reduction in the rate at which the proximal tubule reabsorbs bicarbonate and the distal delivery of supernormal amounts of sodium bicarbonate. With an increased stimulus to distal sodium reabsorption, indicated by the finding of hyperaldosteronism, delivery to the distal nephron of supernormal amounts of sodium with the relatively impermeant bicarbonate anion would be expected to increase intraluminal negativity in the distal nephron, and as a consequence, increase potassium secretion and promote renal potassium wasting.
AuthorsA Sebastian, E McSherry, R C Morris Jr
JournalThe Journal of clinical investigation (J Clin Invest) Vol. 50 Issue 1 Pg. 231-43 (Jan 1971) ISSN: 0021-9738 [Print] United States
PMID5101297 (Publication Type: Journal Article)
Chemical References
  • Alkalies
  • Bicarbonates
  • Ammonium Chloride
  • Aldosterone
Topics
  • Acidosis, Renal Tubular (complications, metabolism)
  • Adult
  • Aldosterone (urine)
  • Alkalies (therapeutic use)
  • Ammonium Chloride (pharmacology)
  • Bicarbonates (blood, metabolism, pharmacology, urine)
  • Child
  • Child, Preschool
  • Humans

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: