HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Free drug concentration monitoring in clinical practice. Rationale and current status.

Abstract
Recent advances in techniques to determine free drug concentrations have lead to a substantial increase in the monitoring of this parameter in clinical practice. The majority of drug binding to macromolecules in serum can be accounted for by association with albumin and alpha 1-acid glycoprotein. Albumin is the primary binding protein for acidic drugs, while binding to alpha 1-acid glycoprotein is more commonly observed with basic lipophilic agents. Alterations in the concentrations of either of these macromolecules can result in significant changes in free fraction. Diseases such as cirrhosis, nephrotic syndrome and malnourishment can result in hypoalbuminaemia. Burn injury, cancer, chronic pain syndrome, myocardial infarction, inflammatory diseases and trauma are all associated with elevations in the concentration of alpha 1-acid glycoprotein. Treatment with a number of drugs has also been shown to increase alpha 1-acid glycoprotein serum concentrations. A wide variety of biological fluids have been examined for their ability to provide an estimation of free drug concentration at receptor sites. The most useful fluid for estimating free drug concentrations appears to be plasma or serum, with subsequent treatment of the sample to separate free and bound drug by an appropriate technique. The two most widely used methods are equilibrium dialysis and ultrafiltration. Of these two, ultrafiltration has the greatest utility clinically because it is rapid and relatively simple. The major difficulty associated with this method involves the binding of drug to the ultrafilters, but significant progress has been made in solving this problem. Several authors have endorsed the routine use of free drug concentration monitoring. Data examining the clinical usefulness of free drug concentration monitoring for phenytoin, carbamazepine, valproic acid, disopyramide and lignocaine (lidocaine) are reviewed. While available evidence suggests that free concentrations may correlate with clinical effects better than total drug concentrations, there are insufficient data to justify the recommendation of the routine use of free drug concentration monitoring for any of these agents at present.
AuthorsC K Svensson, M N Woodruff, J G Baxter, D Lalka
JournalClinical pharmacokinetics (Clin Pharmacokinet) 1986 Nov-Dec Vol. 11 Issue 6 Pg. 450-69 ISSN: 0312-5963 [Print] Switzerland
PMID3542337 (Publication Type: Journal Article, Research Support, U.S. Gov't, P.H.S., Review)
Chemical References
  • Pharmaceutical Preparations
Topics
  • Humans
  • Monitoring, Physiologic
  • Pharmaceutical Preparations (blood)
  • Protein Binding

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: