HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

D-Glucose transport in piglet jejunal brush-border membranes: insights from a disease model.

Abstract
We measured glucose transport in jejunal brush-border membrane vesicles isolated from piglets with acute viral diarrhea, comparing our results with those from control animals. Characterization of membranes from both study groups demonstrated comparable purity and integrity. In the presence of an inwardly directed Na SCN gradient, D-glucose accumulated in control vesicles to a concentration several times the 60-min equilibrium level. "Overshooting" uptake was much lower and more gradual in vesicles from 40-h transmissible gastroenteritis (TGE)-infected pigs compared with control pigs. Equilibrium kinetic studies, in which gramicidin was used to clamp membrane potential at zero, demonstrated a pattern of Na-dependent D-glucose transport in 40-h TGE-infected membranes that differed greatly from the control pattern. From an Eadie-Hofstee plot of stereospecific Na-dependent D-glucose uptake into control vesicles, a pattern suggesting two carrier populations emerged: one with a low-affinity, apparent Km equaling 52.63 +/- 13.81 mM and the other a high-affinity apparent Km equaling 3.92 +/- 0.24 mM for D-glucose. In 40-h TGE-infected membranes, the pattern conformed to a single line, suggesting a homogeneous population of low-affinity carriers, (Km = 37.03 +/- 1.92 mM), which did not differ from the low-affinity carriers seen in control animals. We conclude that the absence of the high-affinity D-glucose carriers in jejunal brush-border membrane is an important determinant of the defective glucose transport that characterizes viral diarrhea. Because previous studies have strongly suggested that in acute TGE diarrhea the epithelium is composed of relatively undifferentiated crypt-type cells, we speculate that high-affinity D-glucose carriers are lacking in normal crypt epithelial cells and that they are incorporated into brush-border membranes of jejunal enterocytes as the cells differentiate in the course of their migration from crypt to villus.
AuthorsD J Keljo, R J MacLeod, M H Perdue, D G Butler, J R Hamilton
JournalThe American journal of physiology (Am J Physiol) Vol. 249 Issue 6 Pt 1 Pg. G751-60 (Dec 1985) ISSN: 0002-9513 [Print] United States
PMID3002183 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Sodium
  • Alkaline Phosphatase
  • Sucrase
  • Sodium-Potassium-Exchanging ATPase
  • Glucose
Topics
  • Alkaline Phosphatase (metabolism)
  • Animals
  • Biological Transport
  • Diarrhea (metabolism)
  • Disease Models, Animal
  • Gastroenteritis, Transmissible, of Swine (metabolism)
  • Glucose (metabolism)
  • Humans
  • Intestinal Mucosa (metabolism, ultrastructure)
  • Jejunum (metabolism, ultrastructure)
  • Microvilli (metabolism)
  • Osmolar Concentration
  • Sodium (physiology)
  • Sodium-Potassium-Exchanging ATPase (metabolism)
  • Sucrase (metabolism)
  • Swine

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: