HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Altered expression and function of the insulin receptor in a family with lipoatrophic diabetes.

Abstract
To determine the role of genetic defects in the insulin receptor in the insulin resistance of lipoatrophic diabetes mellitus, we studied insulin binding, insulin receptor autophosphorylation, and insulin receptor mRNA levels and performed Southern blot analysis of genomic DNA in four siblings, all of whom have some degree of insulin resistance and three of whom have lipoatrophy. The insulin receptor concentration in Epstein-Barr virus-transformed lymphocytes was about 30% of normal in all three lipoatrophic siblings (LA1, LA2, and LA3) and was 55% of normal in the nonlipoatrophic sibling (LAS). Insulin receptor mRNA concentrations in the lymphocytes paralleled insulin binding and ranged from 15-67% of the mean normal level. Insulin binding to fibroblasts was also reduced about 50% in the lipoatrophic siblings. In addition, insulin binding to fibroblasts of LAS and LA2 exhibited a rightward shift of the competition curve, suggesting reduced receptor affinity [ED50, 35 and 50 ng/mL (5845 and 8350 pmol/L); normal, 1-3 ng/mL (167-501 pmol/L)]. Receptor autophosphorylation determined using Triton X-100 extracts of the fibroblasts was decreased in LA1 and LA3, but normal in LA2 and LAS. Using restriction enzyme digests of genomic DNA and probes spanning the entire cDNA of the insulin receptor, no gross alterations in receptor gene structure were detected in any members of this family. In 2 of the lipoatrophic siblings (LA1 and LA3) and in the sibling with insulin resistance but no lipoatrophy (LAS), a unique variant BamHI site was detected using a probe to the alpha-subunit region. This site was not found in 200 normal or diabetic insulin receptor alleles. By use of probes 5' and 3' to the alpha-subunit probe and by genomic cloning analysis, this variant BamHI site was localized to an intron in the insulin receptor gene downstream of exon 3 which encodes amino acids 191-296 of the alpha-subunit of the receptor. These data indicate the complex nature of familial lipoatrophic diabetes mellitus, with alterations in insulin receptor expression and/or function in both clinically affected and non-affected siblings. Both the reduced insulin binding and reduced levels of insulin receptor mRNA in the lipoatrophic siblings suggest that an insulin receptor gene defect contributes to this syndrome. Several members of this family also carry a unique variant insulin receptor gene, which, however, could not be linked to a specific alteration in receptor expression or the presence of lipoatrophy.(ABSTRACT TRUNCATED AT 250 WORDS)
AuthorsK M Kriauciunas, C R Kahn, D Muller-Wieland, S S Reddy, R Taub
JournalThe Journal of clinical endocrinology and metabolism (J Clin Endocrinol Metab) Vol. 67 Issue 6 Pg. 1284-93 (Dec 1988) ISSN: 0021-972X [Print] United States
PMID2903867 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • RNA, Messenger
  • Receptor, Insulin
  • DNA Restriction Enzymes
  • Deoxyribonuclease BamHI
Topics
  • DNA Restriction Enzymes
  • Deoxyribonuclease BamHI
  • Diabetes Mellitus, Lipoatrophic (genetics, metabolism)
  • Female
  • Gene Expression Regulation
  • Genetic Variation
  • Humans
  • Insulin Resistance
  • Male
  • Phosphorylation
  • Polymorphism, Restriction Fragment Length
  • RNA, Messenger (metabolism)
  • Receptor, Insulin (genetics, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: