HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

An RNA Hybridization Assay for Screening Influenza A Virus Polymerase Inhibitors Using the Entire Ribonucleoprotein Complex.

Abstract
Novel antiviral drugs, which are less prone to resistance development, are desirable alternatives to the currently approved drugs for the treatment of potentially serious influenza virus infections. The viral polymerase is highly conserved and serves as an attractive target for antiviral drugs since potent inhibitors would directly stop viral replication at an early stage. Recent structural studies on the functional domains of the heterotrimeric influenza polymerase, which comprises subunits PA, PB1, and PB2, opened the way to a structure-based approach for optimizing inhibitors of viral replication. These strategies, however, are limited by the use of isolated protein fragments instead of employing the entire ribonucleoprotein complex (RNP), which represents the functional form of the influenza polymerase in infected cells. In this study, we have established a screening assay for efficient and reliable analysis of potential influenza polymerase inhibitors of various molecular targets such as monoselective polymerase inhibitors targeting the endonuclease site, the cap-binding domain, and the polymerase active site, respectively. By utilizing whole viral RNPs and a radioactivity-free endpoint detection with the capability for efficient compound screening while offering high-content information on potential inhibitors to drive medicinal chemistry program in a reliable manner, this biochemical assay provides significant advantages over the currently available conventional assays. We propose that this assay can eventually be adapted for coinstantaneous analysis and subsequent optimization of two or more different chemical scaffold classes targeting multiple active sites within the polymerase complex, thus enabling the evaluation of drug combinations and characterization of molecules with dual functionality.
AuthorsFranz-Ferdinand Roch, Georg Hinterkörner, John Menke, Guo-Qing Tang, Stephen Cusack, Barbara Butzendobler, Helmut Buschmann, Kausiki Datta, Andrea Wolkerstorfer
JournalAssay and drug development technologies (Assay Drug Dev Technol) Vol. 13 Issue 8 Pg. 488-506 (Oct 2015) ISSN: 1557-8127 [Electronic] United States
PMID26461433 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Antiviral Agents
  • Ribonucleoproteins
  • DNA-Directed RNA Polymerases
Topics
  • Antiviral Agents (analysis, pharmacology)
  • DNA-Directed RNA Polymerases (analysis, antagonists & inhibitors, genetics)
  • Drug Evaluation, Preclinical (methods)
  • Humans
  • Influenza A virus (drug effects, enzymology)
  • Ribonucleoproteins (analysis, genetics, pharmacology)
  • Virus Replication (drug effects, physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: