HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Molecular basis of the attenuated phenotype of human APOBEC3B DNA mutator enzyme.

Abstract
The human APOBEC3A and APOBEC3B genes (A3A and A3B) encode DNA mutator enzymes that deaminate cytidine and 5-methylcytidine residues in single-stranded DNA (ssDNA). They are important sources of mutations in many cancer genomes which show a preponderance of CG->TA transitions. Although both enzymes can hypermutate chromosomal DNA in an experimental setting, only A3A can induce double strand DNA breaks, even though the catalytic domains of A3B and A3A differ by only 9% at the protein level. Accordingly we sought the molecular basis underlying A3B attenuation through the generation of A3A-A3B chimeras and mutants. It transpires that the N-terminal domain facilitates A3B activity while a handful of substitutions in the catalytic C-terminal domain impacting ssDNA binding serve to attenuate A3B compared to A3A. Interestingly, functional attenuation is also observed for the rhesus monkey rhA3B enzyme compared to rhA3A indicating that this genotoxic dichotomy has been selected for and maintained for some 38 million years. Expression of all human ssDNA cytidine deaminase genes is absent in mature sperm indicating they contribute to somatic mutation and cancer but not human diversity.
AuthorsVincent Caval, Mohamed S Bouzidi, Rodolphe Suspène, Hélène Laude, Marie-Charlotte Dumargne, Anu Bashamboo, Thomas Krey, Jean-Pierre Vartanian, Simon Wain-Hobson
JournalNucleic acids research (Nucleic Acids Res) Vol. 43 Issue 19 Pg. 9340-9 (Oct 30 2015) ISSN: 1362-4962 [Electronic] England
PMID26384561 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Chemical References
  • Minor Histocompatibility Antigens
  • Proteins
  • APOBEC3A protein, human
  • APOBEC3B protein, human
  • Cytidine Deaminase
Topics
  • Animals
  • Cell Line
  • Cytidine Deaminase (chemistry, genetics, metabolism)
  • DNA Breaks, Double-Stranded
  • HeLa Cells
  • Humans
  • Macaca mulatta
  • Minor Histocompatibility Antigens
  • Mutation
  • Phenotype
  • Protein Structure, Tertiary
  • Proteins (chemistry, genetics)
  • Quail
  • RNA Editing

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: