HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

High-throughput cardiac safety evaluation and multi-parameter arrhythmia profiling of cardiomyocytes using microelectrode arrays.

Abstract
Microelectrode arrays (MEAs) recording extracellular field potentials of human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) provide a rich data set for functional assessment of drug response. The aim of this work is the development of a method for a systematic analysis of arrhythmia using MEAs, with emphasis on the development of six parameters accounting for different types of cardiomyocyte signal irregularities. We describe a software approach to carry out such analysis automatically including generation of a heat map that enables quick visualization of arrhythmic liability of compounds. We also implemented signal processing techniques for reliable extraction of the repolarization peak for field potential duration (FPD) measurement even from recordings with low signal to noise ratios. We measured hiPS-CM's on a 48 well MEA system with 5minute recordings at multiple time points (0.5, 1, 2 and 4h) after drug exposure. We evaluated concentration responses for seven compounds with a combination of hERG, QT and clinical proarrhythmia properties: Verapamil, Ranolazine, Flecainide, Amiodarone, Ouabain, Cisapride, and Terfenadine. The predictive utility of MEA parameters as surrogates of these clinical effects were examined. The beat rate and FPD results exhibited good correlations with previous MEA studies in stem cell derived cardiomyocytes and clinical data. The six-parameter arrhythmia assessment exhibited excellent predictive agreement with the known arrhythmogenic potential of the tested compounds, and holds promise as a new method to predict arrhythmic liability.
AuthorsKristin H Gilchrist, Gregory F Lewis, Elaine A Gay, Katelyn L Sellgren, Sonia Grego
JournalToxicology and applied pharmacology (Toxicol Appl Pharmacol) Vol. 288 Issue 2 Pg. 249-57 (Oct 15 2015) ISSN: 1096-0333 [Electronic] United States
PMID26232523 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2015 Elsevier Inc. All rights reserved.
Topics
  • Arrhythmias, Cardiac (chemically induced, metabolism, physiopathology)
  • Automation, Laboratory
  • Cell Differentiation
  • Cells, Cultured
  • Dose-Response Relationship, Drug
  • Equipment Design
  • Heart Rate (drug effects)
  • High-Throughput Screening Assays (instrumentation, methods)
  • Humans
  • Induced Pluripotent Stem Cells (drug effects, metabolism)
  • Membrane Potentials (drug effects)
  • Microelectrodes
  • Myocytes, Cardiac (drug effects, metabolism)
  • Risk Assessment
  • Signal Processing, Computer-Assisted
  • Signal-To-Noise Ratio
  • Software
  • Time Factors
  • Toxicity Tests (instrumentation, methods)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: