HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Humidity Dependence of Tribochemical Wear of Monocrystalline Silicon.

Abstract
The nanowear tests of monocrystalline silicon against a SiO2 microsphere were performed using an atomic force microscope in air as a function of relative humidity (RH=0%-90%) and in liquid water at a contact pressure of about 1.20 GPa. The experimental results indicated that RH played an important role in the nanowear of the Si/SiO2 interface. In dry air, a hillock-like wear scar with a height of ∼0.4 nm was formed on the silicon surface. However, with the increase of RH, the wear depth on the silicon surface first increased to a maximum value of ∼14 nm at 50% RH and then decreased below the detection limit at RH above 85% or in water. The transmission electron microscopy analysis showed that the serious wear on the silicon surface at low and medium RHs occurred without subsurface damage, indicating that the wear was due to tribochemical reactions between the Si substrate and the SiO2 counter surface, rather than mechanical damages. The RH dependence of the tribochemical wear could be explained with a model involving the formation of "Si-O-Si" chemical bonds (bridges) between two solid surfaces. The suppression of tribochemical wear at high RHs or in liquid water might be attributed to the fact that the thickness of the interfacial water layer is thick enough to prevent the solid surfaces from making chemical bridges. The results may help us understand the nanowear mechanism of silicon that is an important material for dynamic microelectromechanical systems.
AuthorsXiaodong Wang, Seong H Kim, Cheng Chen, Lei Chen, Hongtu He, Linmao Qian
JournalACS applied materials & interfaces (ACS Appl Mater Interfaces) Vol. 7 Issue 27 Pg. 14785-92 (Jul 15 2015) ISSN: 1944-8252 [Electronic] United States
PMID26098989 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: