HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Arachidonic acid monooxygenase: Genetic and biochemical approaches to physiological/pathophysiological relevance.

Abstract
Studies with rat genetic models of hypertension pointed to roles for the CYP2C and CYP4A arachidonic acid epoxygenases and ω-hydroxylases in tubular transport, hemodynamics, and blood pressure control. Further progress in defining their physiological functions and significance to human hypertension requires conclusive identifications of the relevant genes and proteins. Here we discuss unequivocal evidence of roles for the murine Cyp4a14, Cyp4a10, and Cyp2c44 genes in the pathophysiology of hypertension by showing that: (a) Cyp4a14(-/-) mice develop sexually dimorphic hypertension associated with renal vasoconstriction, and up-regulated expression of Cyp4a12a and pro-hypertensive 20-hydroxyeicosatetraenoic acid (20-HETE) levels, and b) Cyp4a10(-/-) and Cyp2c44(-/-) mice develop salt sensitive hypertension linked to downregulation or lack of the Cyp2c44 epoxygenase, reductions in anti-hypertensive epoxyeicosatrienoic acids (EETs), and increases in distal sodium reabsorption. Based on these studies, the human CYP4A11 and CYPs 2C8 and 2C9 genes and their products are identified as potential candidates for studies of the molecular basis of human hypertension.
AuthorsJorge H Capdevila, Wenhui Wang, John R Falck
JournalProstaglandins & other lipid mediators (Prostaglandins Other Lipid Mediat) Vol. 120 Pg. 40-9 (Jul 2015) ISSN: 1098-8823 [Print] United States
PMID25986599 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Review)
CopyrightCopyright © 2015 Elsevier Inc. All rights reserved.
Chemical References
  • Epithelial Sodium Channels
  • Cytochrome P-450 Enzyme System
  • Sodium
  • Cytochrome P-450 CYP2J2
Topics
  • Animals
  • Blood Pressure
  • Cytochrome P-450 CYP2J2
  • Cytochrome P-450 Enzyme System (genetics, metabolism)
  • Epithelial Sodium Channels (metabolism)
  • Humans
  • Hypertension (enzymology, genetics, metabolism, physiopathology)
  • Sodium (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: