HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The influence of the ketogenic diet on the elemental and biochemical compositions of the hippocampal formation.

Abstract
A growing body of evidence demonstrates that dietary therapies, mainly the ketogenic diet, may be highly effective in the reduction of epileptic seizures. All of them share the common characteristic of restricting carbohydrate intake to shift the predominant caloric source of the diet to fat. Catabolism of fats results in the production of ketone bodies which become alternate energy substrates to glucose. Although many mechanisms by which ketone bodies yield its anticonvulsant effect are proposed, the relationships between the brain metabolism of the ketone bodies and their neuroprotective and antiepileptogenic action still remain to be discerned. In the study, X-ray fluorescence microscopy and FTIR microspectroscopy were used to follow ketogenic diet-induced changes in the elemental and biochemical compositions of rat hippocampal formation tissue. The use of synchrotron sources of X-rays and infrared allowed us to examine changes in the accumulation and distribution of selected elements (P, S, K, Ca, Fe, Cu, Zn, and Se) and biomolecules (proteins, lipids, ketone bodies, etc.) with the micrometer spatial resolution. The comparison of rats fed with the ketogenic diet and rats fed with the standard laboratory diet showed changes in the hippocampal accumulation of P, K, Ca, and Zn. The relations obtained for Ca (increased level in CA3, DG, and its internal area) and Zn (decreased areal density in CA3 and DG) were analogous to those that we previously observed for rats in the acute phase of pilocarpine-induced seizures. Biochemical analysis of tissues taken from ketogenic diet-fed rats demonstrated increased intensity of absorption band occurring at 1740 cm(-1), which was probably the result of elevated accumulation of ketone bodies. Moreover, higher absolute and relative (3012 cm(-1)/2924 cm(-1), 3012 cm(-1)/lipid massif, and 3012 cm(-1)/amide I) intensity of the 3012-cm(-1) band resulting from increased unsaturated fatty acids content was found after the treatment with the high-fat diet. This article is part of a Special Issue entitled "Status Epilepticus".
AuthorsJoanna Chwiej, Agnieszka Skoczen, Katarzyna Matusiak, Krzysztof Janeczko, Agnieszka Patulska, Christophe Sandt, Rolf Simon, Malgorzata Ciarach, Zuzanna Setkowicz
JournalEpilepsy & behavior : E&B (Epilepsy Behav) Vol. 49 Pg. 40-6 (Aug 2015) ISSN: 1525-5069 [Electronic] United States
PMID25986320 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2015 Elsevier Inc. All rights reserved.
Chemical References
  • Ketone Bodies
  • Glucose
Topics
  • Animals
  • Diet, Ketogenic
  • Glucose (metabolism)
  • Hippocampus (metabolism)
  • Ketone Bodies (metabolism)
  • Male
  • Rats
  • Rats, Wistar

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: