HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Poly(ADP-ribose) polymerase 1 inhibition prevents interleukin-1β-induced inflammation in human osteoarthritic chondrocytes.

Abstract
Osteoarthritis (OA) is an age-related joint disease that is characterized by the degeneration of articular chondrocytes. Nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1) is associated with inflammation response. We investigated the role of PARP-1 in interleukin-1β (IL-1β)-stimulated human articular chondrocytes and its underlying mechanism. Cell viability and apoptosis were evaluated by using 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide assay and flow cytometry, respectively. Tumor necrosis factor-α (TNF-α) level was measured by enzyme-linked immunosorbent assay. The mRNA and protein expression levels of PARP-1, IL-1 receptor (IL-1R), inducible nitric oxide synthase (iNOS), matrix metalloproteinases (MMPs), and tissue inhibitor of metalloproteinases-1 (TIMP-1) were determined by real-time reverse transcriptase-polymerase chain reaction and western blot analysis, respectively. The expression and phosphorylation of NF-кB p65 were measured by western blot analysis. Results showed that stimulation of chondrocytes with IL-1β caused a significant up-regulation of PARP-1 and IL-1R, resulting in NF-кB p65 nuclear translocation and phosphorylation associated with an increase of TNF-α secretion and iNOS expression. PARP-1 was inhibited by siRNA transfection. Results showed that PARP-1 inhibition suppressed IL-1β-induced reduction of cell viability and up-regulation of cell apoptosis, with a reduced IL-1R expression. PARP-1 inhibition also effectively reversed IL-1β-induced inflammatory response through inhibiting the IL-1R/NF-кB pathway. These data suggested that PARP-1 inhibition prevents IL-1β-induced inflammation response at least partly by inhibiting the IL-1R/NF-кB signaling pathway in human articular chondrocytes. Moreover, PARP-1 inhibition reduced MMPs expression and increased TIMP-1 expression, suggesting that PARP-1 inhibition could suppress cartilage destruction by modulating the balance between MMPs and TIMP-1. Inhibition of PARP-1 might be useful in the treatment of OA.
AuthorsYujie Sun, Lugang Zhou, Dongmei Lv, Hongzhi Liu, Tian He, Xin Wang
JournalActa biochimica et biophysica Sinica (Acta Biochim Biophys Sin (Shanghai)) Vol. 47 Issue 6 Pg. 422-30 (Jun 2015) ISSN: 1745-7270 [Electronic] China
PMID25926140 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright© The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.
Chemical References
  • Interleukin-1beta
  • NF-kappa B
  • Poly(ADP-ribose) Polymerase Inhibitors
  • Poly(ADP-ribose) Polymerases
Topics
  • Cells, Cultured
  • Chondrocytes (pathology)
  • Humans
  • Inflammation (prevention & control)
  • Interleukin-1beta (physiology)
  • NF-kappa B (metabolism)
  • Osteoarthritis (pathology, physiopathology)
  • Poly(ADP-ribose) Polymerase Inhibitors (pharmacology)
  • Poly(ADP-ribose) Polymerases (drug effects)
  • Real-Time Polymerase Chain Reaction
  • Reverse Transcriptase Polymerase Chain Reaction

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: