HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Chronic overeating impairs hepatic glucose uptake and disposition.

Abstract
Dogs consuming a hypercaloric high-fat and -fructose diet (52 and 17% of total energy, respectively) or a diet high in either fructose or fat for 4 wk exhibited blunted net hepatic glucose uptake (NHGU) and glycogen deposition in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery. The effect of a hypercaloric diet containing neither fructose nor excessive fat has not been examined. Dogs with an initial weight of ≈25 kg consumed a chow and meat diet (31% protein, 44% carbohydrate, and 26% fat) in weight-maintaining (CTR; n = 6) or excessive (Hkcal; n = 7) amounts for 4 wk (cumulative weight gain 0.0 ± 0.3 and 1.5 ± 0.5 kg, respectively, P < 0.05). They then underwent clamp studies with infusions of somatostatin and intraportal insulin (4× basal) and glucagon (basal). The hepatic glucose load was doubled with peripheral (Pe) glucose infusion for 90 min (P1) and intraportal glucose at 4 mg·kg(-1)·min(-1) plus Pe glucose for the final 90 min (P2). NHGU was blunted (P < 0.05) in Hkcal during both periods (mg·kg(-1)·min(-1); P1: 1.7 ± 0.2 vs. 0.3 ± 0.4; P2: 3.6 ± 0.3 vs. 2.3 ± 0.4, CTR vs. Hkcal, respectively). Terminal hepatic glucokinase catalytic activity was reduced nearly 50% in Hkcal vs. CTR (P < 0.05), although glucokinase protein did not differ between groups. In Hkcal vs. CTR, liver glycogen was reduced 27% (P < 0.05), with a 91% increase in glycogen phosphorylase activity (P < 0.05) but no significant difference in glycogen synthase activity. Thus, Hkcal impaired NHGU and glycogen synthesis compared with CTR, indicating that excessive energy intake, even if the diet is balanced and nutritious, negatively impacts hepatic glucose metabolism.
AuthorsKatie C Coate, Guillaume Kraft, Masakazu Shiota, Marta S Smith, Ben Farmer, Doss W Neal, Phil Williams, Alan D Cherrington, Mary Courtney Moore
JournalAmerican journal of physiology. Endocrinology and metabolism (Am J Physiol Endocrinol Metab) Vol. 308 Issue 10 Pg. E860-7 (May 15 2015) ISSN: 1522-1555 [Electronic] United States
PMID25783892 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
CopyrightCopyright © 2015 the American Physiological Society.
Chemical References
  • Blood Glucose
  • C-Peptide
  • Insulin
  • Glucose
Topics
  • Animals
  • Blood Glucose (metabolism)
  • C-Peptide (blood)
  • Chronic Disease
  • Dogs
  • Eating
  • Glucose (pharmacokinetics)
  • Glucose Clamp Technique
  • Hyperphagia (metabolism)
  • Insulin (metabolism)
  • Liver (metabolism)
  • Male
  • Weight Gain

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: