Neural correlates of change in major depressive disorder anhedonia following open-label ketamine.

Anhedonia is a cardinal symptom of major depression and is often refractory to standard treatment, yet no approved medication for this specific symptom exists. In this exploratory re-analysis, we assessed whether administration of rapid-acting antidepressant ketamine was associated specifically with reduced anhedonia in medication-free treatment-refractory patients with major depressive disorder in an open-label investigation. Additionally, participants received either oral riluzole or placebo daily beginning 4 hours post-infusion. A subgroup of patients underwent fluorodeoxyglucose positron emission tomography scans at baseline (1-3 days pre-infusion) and 2 hours post-ketamine infusion. Anhedonia rapidly decreased following a single ketamine infusion; this was sustained for up to three days, but was not altered by riluzole. Reduced anhedonia correlated with increased glucose metabolism in the hippocampus and dorsal anterior cingulate cortex (dACC) and decreased metabolism in the inferior frontal gyrus and orbitofrontal cortex (OFC). The tentative relationship between change in anhedonia and glucose metabolism remained significant in dACC and OFC, and at trend level in the hippocampus, a result not anticipated, when controlling for change in total depression score. Results, however, remain tenuous due to the lack of a placebo control for ketamine. In addition to alleviating overall depressive symptoms, ketamine could possess anti-anhedonic potential in major depressive disorder, which speculatively, may be mediated by alterations in metabolic activity in the hippocampus, dACC and OFC.
AuthorsNíall Lally, Allison C Nugent, David A Luckenbaugh, Mark J Niciu, Jonathan P Roiser, Carlos A Zarate Jr
JournalJournal of psychopharmacology (Oxford, England) (J Psychopharmacol) Vol. 29 Issue 5 Pg. 596-607 (May 2015) ISSN: 1461-7285 [Electronic] United States
PMID25691504 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural)
Copyright© The Author(s) 2015.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research network!

Choose Username:
Verify Password: