HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Implantation and atomic-scale investigation of self-interstitials in graphene.

Abstract
Crystallographic defects play a key role in determining the properties of crystalline materials. The new class of two-dimensional materials, foremost graphene, have enabled atomically resolved studies of defects, such as vacancies,1-4 grain boundaries,(5-7) dislocations,(8,9) and foreign atom substitutions.(10-14) However, atomic resolution imaging of implanted self-interstitials has so far been reported neither in any three-dimensional nor in any two-dimensional material. Here, we deposit extra carbon into single-layer graphene at soft landing energies of ∼ 1 eV using a standard carbon coater. We identify all the self-interstitial dimer structures theoretically predicted earlier,(15-17) employing 80 kV aberration-corrected high-resolution transmission electron microscopy. We demonstrate accumulation of the interstitials into larger aggregates and dislocation dipoles, which we predict to have strong local curvature by atomistic modeling, and to be energetically favorable configurations as compared to isolated interstitial dimers. Our results contribute to the basic knowledge on crystallographic defects and lay out a pathway into engineering the properties of graphene by pushing the crystal into a state of metastable supersaturation.
AuthorsOssi Lehtinen, Nilesh Vats, Gerardo Algara-Siller, Pia Knyrim, Ute Kaiser
JournalNano letters (Nano Lett) Vol. 15 Issue 1 Pg. 235-41 (Jan 14 2015) ISSN: 1530-6992 [Electronic] United States
PMID25494293 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: