HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Development of nanodroplets for histotripsy-mediated cell ablation.

Abstract
This report describes the synthesis of amphiphilic copolymers (ABC-1 and ABC-2) composed of a hydrophilic poly(ethylene glycol) (PEG) block, a central poly(acrylic acid) (PAA) block, and a random copolymer of heptadecafluorodecyl methacrylate (HDFMA) and methyl methacrylate (MMA) forming the hydrophobic block, which are used to form nanodroplets for ultrasound-mediated cell ablation. Specifically, the effect of molecular weight of PEG and P(HDFMA-co-MMA) blocks on polymer's ability to self-assemble around a variable amount (0%, 1%, and 2% v/v) of perfluoropentane (PFP) forming nanodroplets is investigated. The ability of different nanodroplets formulations embedded with a monolayer of red blood cells (RBCs) in tissue-mimicking agarose phantoms to initiate and sustain a bubble cloud in response to ultrasound treatments with different acoustic pressures and the associated ablation of RBCs were also investigated. Results show that ABC-1 polymer composed of a 2 kDa PEG block and a 6.7 kDa P(HDFMA-co-MMA) block better encapsulate the PFP core compared to ABC-2 polymer composed of a 5 kDa PEG block and 11.4 kDa P(HDFMA-co-MMA) block. Further, the ablative capacity indicated by the damage area in the RBCs monolayer increased with the increase in PFP content and reached its maximum with the nanodroplets formulated using ABC-1 polymer and encapsulating 2% v/v PFP. The nanodroplets formulated using ABC-1 polymer and loaded with 2% PFP produced the cavitation cloud and exhibited their ablative effect at an acoustic pressure that is 2.5-fold lower than the acoustic pressure needed to generate the same effect using a histotripsy (ultrasound) pulse alone, which indicates the ability of these nanodroplets to achieve targeted and self-limiting fractionation of disease cells while sparing neighboring healthy ones. Results also show that effective nanodroplets maintained their size and concentration upon incubation with bovine serum albumin at 37 °C for 24 h, which indicates their stability in physiologic conditions and their promise for in vivo cancer cell ablation.
AuthorsYasemin Yuksel Durmaz, Eli Vlaisavljevich, Zhen Xu, Mohamed ElSayed
JournalMolecular pharmaceutics (Mol Pharm) Vol. 11 Issue 10 Pg. 3684-95 (Oct 06 2014) ISSN: 1543-8392 [Electronic] United States
PMID25137434 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Drug Carriers
  • Fluorocarbons
  • Polymers
  • Polyethylene Glycols
  • perfluoropentane
Topics
  • Animals
  • Cattle
  • Drug Carriers (chemistry)
  • Drug Delivery Systems (methods)
  • Erythrocytes
  • Fluorocarbons (chemistry)
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Polyethylene Glycols (chemistry)
  • Polymers (chemistry)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: