HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies.

Abstract
In BRAF(V600)-mutant tumours, most mechanisms of resistance to drugs that target the BRAF and/or MEK kinases rely on reactivation of the RAS-RAF-MEK-ERK mitogen-activated protein kinase (MAPK) signal transduction pathway, on activation of the alternative, PI(3)K-AKT-mTOR, pathway (which is ERK independent) or on modulation of the caspase-dependent apoptotic cascade. All three pathways converge to regulate the formation of the eIF4F eukaryotic translation initiation complex, which binds to the 7-methylguanylate cap (m(7)G) at the 5' end of messenger RNA, thereby modulating the translation of specific mRNAs. Here we show that the persistent formation of the eIF4F complex, comprising the eIF4E cap-binding protein, the eIF4G scaffolding protein and the eIF4A RNA helicase, is associated with resistance to anti-BRAF, anti-MEK and anti-BRAF plus anti-MEK drug combinations in BRAF(V600)-mutant melanoma, colon and thyroid cancer cell lines. Resistance to treatment and maintenance of eIF4F complex formation is associated with one of three mechanisms: reactivation of MAPK signalling, persistent ERK-independent phosphorylation of the inhibitory eIF4E-binding protein 4EBP1 or increased pro-apoptotic BCL-2-modifying factor (BMF)-dependent degradation of eIF4G. The development of an in situ method to detect the eIF4E-eIF4G interactions shows that eIF4F complex formation is decreased in tumours that respond to anti-BRAF therapy and increased in resistant metastases compared to tumours before treatment. Strikingly, inhibiting the eIF4F complex, either by blocking the eIF4E-eIF4G interaction or by targeting eIF4A, synergizes with inhibiting BRAF(V600) to kill the cancer cells. eIF4F not only appears to be an indicator of both innate and acquired resistance but also is a promising therapeutic target. Combinations of drugs targeting BRAF (and/or MEK) and eIF4F may overcome most of the resistance mechanisms arising in BRAF(V600)-mutant cancers.
AuthorsLise Boussemart, Hélène Malka-Mahieu, Isabelle Girault, Delphine Allard, Oskar Hemmingsson, Gorana Tomasic, Marina Thomas, Christine Basmadjian, Nigel Ribeiro, Frédéric Thuaud, Christina Mateus, Emilie Routier, Nyam Kamsu-Kom, Sandrine Agoussi, Alexander M Eggermont, Laurent Désaubry, Caroline Robert, Stéphan Vagner
JournalNature (Nature) Vol. 513 Issue 7516 Pg. 105-9 (Sep 04 2014) ISSN: 1476-4687 [Electronic] England
PMID25079330 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Antineoplastic Agents
  • Eukaryotic Initiation Factor-4E
  • Eukaryotic Initiation Factor-4F
  • Eukaryotic Initiation Factor-4G
  • Indoles
  • Protein Kinase Inhibitors
  • Sulfonamides
  • Triterpenes
  • silvestrol
  • Vemurafenib
  • BRAF protein, human
  • Proto-Oncogene Proteins B-raf
  • Mitogen-Activated Protein Kinase Kinases
  • Eukaryotic Initiation Factor-4A
Topics
  • Animals
  • Antineoplastic Agents (pharmacology)
  • Cell Death (drug effects)
  • Cell Line, Tumor
  • Colonic Neoplasms (pathology)
  • Drug Resistance, Neoplasm (drug effects)
  • Drug Synergism
  • Eukaryotic Initiation Factor-4A (antagonists & inhibitors, metabolism)
  • Eukaryotic Initiation Factor-4E (metabolism)
  • Eukaryotic Initiation Factor-4F (antagonists & inhibitors, chemistry, metabolism)
  • Eukaryotic Initiation Factor-4G (metabolism)
  • Female
  • Humans
  • Indoles (pharmacology)
  • MAP Kinase Signaling System (drug effects)
  • Melanoma (drug therapy, genetics, pathology)
  • Mice
  • Mitogen-Activated Protein Kinase Kinases (antagonists & inhibitors)
  • Phosphorylation (drug effects)
  • Protein Binding (drug effects)
  • Protein Kinase Inhibitors (pharmacology)
  • Proto-Oncogene Proteins B-raf (antagonists & inhibitors, genetics)
  • Signal Transduction (drug effects)
  • Sulfonamides (pharmacology)
  • Thyroid Neoplasms (pathology)
  • Triterpenes (pharmacology)
  • Vemurafenib
  • Xenograft Model Antitumor Assays

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: