HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Evidence of the direct involvement of the substrate TCP radical in functional switching from oxyferrous O2 carrier to ferric peroxidase in the dual-function hemoglobin/dehaloperoxidase from Amphitrite ornata.

Abstract
The coelomic O2-binding hemoglobin dehaloperoxidase (DHP) from the sea worm Amphitrite ornata is a dual-function heme protein that also possesses a peroxidase activity. Two different starting oxidation states are required for reversible O2 binding (ferrous) and peroxidase (ferric) activity, bringing into question how DHP manages the two functions. In our previous study, the copresence of substrate 2,4,6-trichlorophenol (TCP) and H2O2 was found to be essential for the conversion of oxy-DHP to enzymatically active ferric DHP. On the basis of that study, a functional switching mechanism involving substrate radicals (TCP(•)) was proposed. To further support this mechanism, herein we report details of our investigations into the H2O2-mediated conversion of oxy-DHP to the ferric or ferryl ([TCP] < [H2O2]) state triggered by both biologically relevant [TCP and 4-bromophenol (4-BP)] and nonrelevant (ferrocyanide) compounds. At <50 μM H2O2, all of these conversion reactions are completely inhibited by ferric heme ligands (KCN and imidazole), indicating the involvement of ferric DHP. Furthermore, the spin-trapping reagent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) effectively inhibits the TCP/4-BP (but not ferrocyanide)-triggered conversion of oxy-DHP to ferric DHP. These results and O2 concentration-dependent conversion rates observed in this study demonstrate that substrate TCP triggers the conversion of oxy-DHP to a peroxidase by TCP(•) oxidation of the deoxyferrous state. TCP(•) is progressively generated, by increasingly produced amounts of ferric DHP, upon H2O2 oxidation of TCP catalyzed initially by trace amounts of ferric enzyme present in the oxy-DHP sample. The data presented herein further address the mechanism of how the halophenolic substrate triggers the conversion of hemoglobin DHP into a peroxidase.
AuthorsShengfang Sun, Masanori Sono, Jing Du, John H Dawson
JournalBiochemistry (Biochemistry) Vol. 53 Issue 30 Pg. 4956-69 (Aug 05 2014) ISSN: 1520-4995 [Electronic] United States
PMID24972312 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Chlorophenols
  • Ferric Compounds
  • Hemoglobins
  • Peroxidase
  • 2,4,6-trichlorophenol
  • Oxygen
Topics
  • Animals
  • Chlorophenols (chemistry)
  • Ferric Compounds (chemistry)
  • Hemoglobins (chemistry, physiology)
  • Oxygen (chemistry, physiology)
  • Peroxidase (chemistry, physiology)
  • Polychaeta
  • Substrate Specificity

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: